On the Extrema of Band Functions in Periodic Waveguides
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 87-90
Cet article a éte moissonné depuis la source Math-Net.Ru
In the work we construct an example of a periodic differential operator whose spectrum has gaps with edges attained by the band functions at interior points of the Brillouin zone. This example is the Laplacian on a pair of infinite parallel strips with common boundary from which a periodic system of small holes is cut out. At that, on the outer boundaries the Dirichlet condition is imposed, while on the common boundary the Neumann condition is considered.
Keywords:
periodic operator, gap, spectrum, dispersion law, waveguide.
Mots-clés : Brillouin zone
Mots-clés : Brillouin zone
@article{FAA_2013_47_3_a7,
author = {D.I. Borisov and K. V. Pankrashin},
title = {On the {Extrema} of {Band} {Functions} in {Periodic} {Waveguides}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {87--90},
year = {2013},
volume = {47},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a7/}
}
D.I. Borisov; K. V. Pankrashin. On the Extrema of Band Functions in Periodic Waveguides. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 87-90. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a7/
[1] P. Exner, P. Kuchment, B. Winn, J. Phys. A, 43:47 (2010), 474022 | DOI | MR | Zbl
[2] A. Figotin, I. Vitebsky, Phys. Rev. A, 76:5 (2007), 053839 | DOI | MR
[3] J. Harrison, P. Kuchment, A. Sobolev, B. Winn, J. Phys. A, 40:27 (2007), 7597–7618 | DOI | MR | Zbl
[4] S. Mahmoodian, A. A. Sukhorukov, S. Ha et al., Optics Express, 18:25 (2010), 25693–25701 | DOI
[5] G. Mumcu, K. Sertel, J. L. Volakis, I. Vitebskiy, A. Figotin, IEEE Trans. Antennas Propagation, 53:12 (2005), 4026–4034 | DOI