A Resultant System as the Set of Coefficients of a Single Resultant
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 82-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Explicit expressions for polynomials forming a homogeneous resultant system of a set of $m+1$ homogeneous polynomial equations in $n+1$ variables are given. These polynomials are obtained as coefficients of a homogeneous resultant for an appropriate system of $n+1$ equations in $n+1$ variables, which is explicitly constructed from the initial system. Similar results are obtained for mixed resultant systems of sets of $n+1$ sections of line bundles on a projective variety of dimension $n$. As an application, an algorithm determining whether one of the orbits under an action of an affine irreducible algebraic group on a quasi-affine variety is contained in the closure of another orbit is described.
Keywords:
elimination theory, resultant.
@article{FAA_2013_47_3_a6,
author = {Ya. V. Abramov},
title = {A {Resultant} {System} as the {Set} of {Coefficients} of a {Single} {Resultant}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--87},
year = {2013},
volume = {47},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a6/}
}
Ya. V. Abramov. A Resultant System as the Set of Coefficients of a Single Resultant. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 82-87. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a6/
[1] A. Morozov, Sh. Shakirov, New and old results in resultant theory, arXiv: 0911.5278
[2] M. J. Encarnacion, Appl. Algebra Eng. Comm. Comput., 9:3 (1998), 243–245 | DOI | MR | Zbl
[3] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinskiy, Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory and Applications, Birkhäuser, Boston, 1994 | MR
[4] V. L. Popov, Two orbits: When is one in the closure of the other?, arXiv: 0808.2735v7 | MR
[5] B. L. Van der Varden, Algebra, Nauka, M., 1979 | MR