Syzygy Algebras for Segre Embeddings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 54-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the syzygy spaces for the Segre embedding $\mathbb{P}(U)\times\mathbb{P}(V)\subset\mathbb{P}(U\otimes V)$ in terms of representations of $\operatorname{GL}(U)\times\operatorname{GL}(V)$ and construct the minimal resolutions of the sheaves $\mathcal{O}_{\mathbb{P}(U)\times\mathbb{P}(V)}(a,b)$ in $D(\mathbb{P}(U\otimes V))$ for $a\ge-\dim(U)$ and $b\ge-\dim(V)$. We also prove a property of multiplication in syzygy spaces of the Segre embedding.
Keywords: syzygy algebra, representations of $\operatorname{GL}$, Segre embedding, derived category of coherent sheaves.
Mots-clés : Koszul cohomology
@article{FAA_2013_47_3_a4,
     author = {I. V. Netay},
     title = {Syzygy {Algebras} for {Segre} {Embeddings}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {54--74},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a4/}
}
TY  - JOUR
AU  - I. V. Netay
TI  - Syzygy Algebras for Segre Embeddings
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 54
EP  - 74
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a4/
LA  - ru
ID  - FAA_2013_47_3_a4
ER  - 
%0 Journal Article
%A I. V. Netay
%T Syzygy Algebras for Segre Embeddings
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 54-74
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a4/
%G ru
%F FAA_2013_47_3_a4
I. V. Netay. Syzygy Algebras for Segre Embeddings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 54-74. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a4/

[1] A. L. Gorodentsev, A. S. Khoroshkin, A. N. Rudakov, “On syzygies of highest weight orbits”, Amer. Math. Soc. Transl. (2), 221, 2007, 79–120 | MR | Zbl

[2] G. Ottaviani, R. Paoletti, “Syzygies of Veronese embeddings”, Compositio Math., 125:1 (2001), 31–37, arXiv: math/9811131 | DOI | MR | Zbl

[3] A. Snowden, “Syzygies of Segre embeddings and $\Delta$-modules”, Duke Math. J., 162:2 (2013), 225–277, arXiv: 1006.5248 | DOI | MR | Zbl

[4] W. Fulton, Young Tableaux, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[5] M. Green, “Koszul cohomology and the geometry of projective varieties, I”, J. Differential Geom., 19 (1984), 125–171 | DOI | MR | Zbl

[6] S. I. Gelfand, Yu. I. Manin, “Gomologicheskaya algebra”, Algebra–5, Itogi nauki i tekhn. Sovremennye problemu matematiki. Fundamentalnye napravleniya, 38, VINITI, M., 1989, 5–233 | MR

[7] G. Lancaster, J. Towber, “Representation-functors and flag-algebras for the classical groups”, J. Algebra, 59:1 (1979), 16–38 | DOI | MR | Zbl

[8] E. B. Vinberg, V. L. Popov, “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 749–764 | MR | Zbl

[9] W. Fulton, J. Harris, Representation Theory. A First Course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[10] A. Polyshchuk, L. Positselski, Quadratic Algebras, Amer. Math. Soc., Providence, RI, 2005 | MR

[11] J. Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1995 | MR