Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2013_47_3_a3, author = {S. A. Nazarov}, title = {Enforced {Stability} of a {Simple} {Eigenvalue} in the {Continuous} {Spectrum} of a {Waveguide}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--53}, publisher = {mathdoc}, volume = {47}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/} }
TY - JOUR AU - S. A. Nazarov TI - Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 37 EP - 53 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/ LA - ru ID - FAA_2013_47_3_a3 ER -
S. A. Nazarov. Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 37-53. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/
[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo LGU, L., 1980 | MR
[2] K. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969
[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR
[4] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Quart J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl
[5] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl
[6] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. sem. POMI, 264, 2000, 66–82 | MR | Zbl
[7] V. V. Grushin, “O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | DOI | MR | Zbl
[8] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, TMF, 145:3 (2005), 358–371 | DOI | MR | Zbl
[9] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin, 1994 | MR
[10] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl
[11] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics. II, Int. Math. Ser., 9, Springer-Verlag, New York, 2009, 261–309 | DOI | MR | Zbl
[12] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Probl. matem. fiziki, 13, izd-vo LGU, L., 1991, 192–244 | MR
[13] S. A. Nazarov, “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. analiz i ego pril., 40:2 (2006), 20–32 | DOI | MR | Zbl
[14] V. Mazya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Birkhäuser, Basel, 2000 | MR