Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 37-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown in the paper that, under several orthogonality and normalization conditions and a proper choice of accessory parameters, a simple eigenvalue lying between thresholds of the continuous spectrum of the Dirichlet problem in a domain with a cylindrical outlet to infinity is not taken out from the spectrum by a small compact perturbation of the Helmholtz operator. The result is obtained by means of an asymptotic analysis of the augmented scattering matrix.
Keywords: continuous spectrum, discrete spectrum, local perturbations of quantum waveguide.
Mots-clés : perturbation of eigenvalue
@article{FAA_2013_47_3_a3,
     author = {S. A. Nazarov},
     title = {Enforced {Stability} of a {Simple} {Eigenvalue} in the {Continuous} {Spectrum} of a {Waveguide}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--53},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 37
EP  - 53
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/
LA  - ru
ID  - FAA_2013_47_3_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 37-53
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/
%G ru
%F FAA_2013_47_3_a3
S. A. Nazarov. Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 37-53. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a3/

[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo LGU, L., 1980 | MR

[2] K. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[4] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Quart J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[5] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl

[6] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. sem. POMI, 264, 2000, 66–82 | MR | Zbl

[7] V. V. Grushin, “O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | DOI | MR | Zbl

[8] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, TMF, 145:3 (2005), 358–371 | DOI | MR | Zbl

[9] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin, 1994 | MR

[10] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl

[11] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics. II, Int. Math. Ser., 9, Springer-Verlag, New York, 2009, 261–309 | DOI | MR | Zbl

[12] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Probl. matem. fiziki, 13, izd-vo LGU, L., 1991, 192–244 | MR

[13] S. A. Nazarov, “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. analiz i ego pril., 40:2 (2006), 20–32 | DOI | MR | Zbl

[14] V. Mazya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Birkhäuser, Basel, 2000 | MR