On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 12-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the number of limit cycles which bifurcate from a two-saddle loop of an analytic planar vector field $X_0$ under an arbitrary finite-parameter analytic deformation $X_\lambda$, $\lambda\in(\mathbb{R}^N,0)$, is uniformly bounded with respect to $\lambda$.
Mots-clés :
limit cycles
Keywords: finite cyclicity, heteroclinic loop, two-saddle loop.
Keywords: finite cyclicity, heteroclinic loop, two-saddle loop.
@article{FAA_2013_47_3_a1,
author = {L. Gavrilov},
title = {On the {Number} of {Limit} {Cycles} {Which} {Appear} by {Perturbation} of {Two-Saddle} {Cycles} of {Planar} {Vector} {Fields}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {12--27},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/}
}
TY - JOUR AU - L. Gavrilov TI - On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 12 EP - 27 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/ LA - ru ID - FAA_2013_47_3_a1 ER -
%0 Journal Article %A L. Gavrilov %T On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields %J Funkcionalʹnyj analiz i ego priloženiâ %D 2013 %P 12-27 %V 47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/ %G ru %F FAA_2013_47_3_a1
L. Gavrilov. On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 12-27. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/