On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 12-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the number of limit cycles which bifurcate from a two-saddle loop of an analytic planar vector field $X_0$ under an arbitrary finite-parameter analytic deformation $X_\lambda$, $\lambda\in(\mathbb{R}^N,0)$, is uniformly bounded with respect to $\lambda$.
Mots-clés : limit cycles
Keywords: finite cyclicity, heteroclinic loop, two-saddle loop.
@article{FAA_2013_47_3_a1,
     author = {L. Gavrilov},
     title = {On the {Number} of {Limit} {Cycles} {Which} {Appear} by {Perturbation} of {Two-Saddle} {Cycles} of {Planar} {Vector} {Fields}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {12--27},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/}
}
TY  - JOUR
AU  - L. Gavrilov
TI  - On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 12
EP  - 27
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/
LA  - ru
ID  - FAA_2013_47_3_a1
ER  - 
%0 Journal Article
%A L. Gavrilov
%T On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 12-27
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/
%G ru
%F FAA_2013_47_3_a1
L. Gavrilov. On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 12-27. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a1/

[1] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, 3-e izd., NITs «RKhD», Izhevsk; MTsNMO, Moskva, 2002

[2] G. Binyamini, D. Novikov, S. Yakovenko, “On the number of zeros of Abelian integrals”, Invent. Math., 181:2 (2010), 227–289 | DOI | MR | Zbl

[3] M. Bobieński, P. Mardešić, D. Novikov, “Pseudo-Abelian integrals: unfolding generic exponential”, J. Differential Equations, 247:12 (2009), 3357–3376 | DOI | MR | Zbl

[4] M. Bobieński, P. Mardešić, D. Novikov, Pseudo-Abelian integrals on slow-fast Darboux systems, 2010, arXiv: 1007.2001 | Zbl

[5] Ch. Briot, J.-C. Bouquet, “Recherches sur les propriétés des fonctions définies par des équations différentielles”, J. Ecole Polytech., 21:36 (1856), 133–198

[6] M. Caubergh, F. Dumortier, R. Roussarie, “Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle”, Commun. Pure Appl. Anal., 6:1 (2007), 1–21 | DOI | MR | Zbl

[7] L. A. Cherkas, “Ob ustoichivosti osobykh tsiklov”, Differentsialnye uravneniya, 4 (1968), 1012–1017 | MR | Zbl

[8] F. Dumortier, R. Roussarie, “Abelian integrals and limit cycles”, J. Differential Equations, 227:1 (2006), 116–165 | DOI | MR | Zbl

[9] A. M. Gabrielov, “O proektsiyakh poluanaliticheskikh mnozhestv”, Funkts. analiz i ego pril., 2:4 (1968), 18–30 | MR | Zbl

[10] L. Gavrilov, “On the number of limit cycles which appear by perturbation of hamiltonian two-saddle cycles of planar vector fields”, Bull. Braz. Math. Soc., 42:1 (2011), 1–23 | DOI | MR | Zbl

[11] Yu. Ilyashenko, S. Yakovenko, “Finite cyclicity of elementary polycycles in generic families”, Concerning the Hilber 16th Problem, Amer. Math. Soc. Transl., 165, Amer. Math. Soc., Providence, RI, 1995, 21–95 | MR | Zbl

[12] V. Kaloshin, “The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles”, Invent. Math., 151:3 (2003), 451–512 | DOI | MR | Zbl

[13] C. Li, R. Roussarie, “The cyclicity of the elliptic segment loops of the reversible quadratic Hamiltonian systems under quadratic perturbations”, J. Differential Equations, 205:2 (2004), 488–520 | DOI | MR | Zbl

[14] S. Łojasiewicz, J.-Cl. Tougeron, M.-A. Zurro, “Éclatement des coefficients des séries entières et deux théorèmes de Gabrielov”, Manuscripta Math., 92:3 (1997), 325–337 | DOI | MR | Zbl

[15] F. Loray, Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux, http://hal.archives-ouvertes.fr/hal-00016434/en/

[16] S. Luca, F. Dumortier, M. Caubergh, R. Roussarie, “Detecting alien limit cycles near a Hamiltonian 2-saddle cycle”, Discrete Contin. Dyn. Syst., 25:4 (2009), 1081–1108 | DOI | MR | Zbl

[17] J.-F. Mattei, R. Moussu, “Holonomie et intégrales premières”, Ann. Sci. École Norm. Sup. (4), 13:4 (1980), 469–523 | DOI | MR | Zbl

[18] A. Mourtada, Action de derivations irreductibles sur les algebres quasi-regulieres d'Hilbert, 2009, arXiv: 0912.1560v1

[19] G. S. Petrov, “Ellipticheskie integraly i ikh nekoleblemost”, Funkts. analiz i ego pril., 20:1 (1986), 46–49 | MR | Zbl

[20] G. S. Petrov, “Vopros o chisle nulei ellipticheskogo integrala yavlyaetsya polualgebraicheskim”, Matem. zametki, 44:3 (1988), 393–401 | MR | Zbl

[21] R. Roussarie, “On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields”, Bol. Soc. Brasil. Mat., 17:2 (1986), 67–101 | DOI | MR | Zbl

[22] R. Roussarie, “Cyclicité finie des lacets et des points cuspidaux”, Nonlinearity, 2:1 (1989), 73–117 | DOI | MR | Zbl

[23] R. Roussarie, Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progress in Mathematics, 164, Birkhäuser, Basel, 1998 | MR | Zbl

[24] R. Roussarie, “Quasi-conformal mapping theorem and bifurcations”, Bol. Soc. Brasil. Mat. (N.S.), 29:2 (1998), 229–251 | DOI | MR | Zbl

[25] H. Żołądek, The Monodromy Group, Mathematics Institute of the Polish Academy of Sciences. Math. Monographs (New Series), 67, Birkhäuser, Basel, 2006 | MR | Zbl