Virtual Continuity of Measurable Functions of Several Variables and Embedding Theorems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Luzin's classical theorem states that any measurable function of one variable is “almost” continuous. This is no longer true for measurable functions of several variables. The search for a correct analogue of Luzin's theorem leads to the notion of virtually continuous functions of several variables. This, probably new, notion appears implicitly in statements such as embedding theorems and trace theorems for Sobolev spaces. In fact, it reveals their nature of being theorems about virtual continuity. This notion is especially useful for the study and classification of measurable functions, as well as in some questions on dynamical systems, polymorphisms, and bistochastic measures. In this work we recall the necessary definitions and properties of admissible metrics, define virtual continuity, and describe some of its applications. A detailed analysis will be presented elsewhere.
Keywords: admissible metric, virtual continuity, function of several variables, trace theorem.
Mots-clés : polymorphism
@article{FAA_2013_47_3_a0,
     author = {A. M. Vershik and P. B. Zatitskii and F. V. Petrov},
     title = {Virtual {Continuity} of {Measurable} {Functions} of {Several} {Variables} and {Embedding} {Theorems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. B. Zatitskii
AU  - F. V. Petrov
TI  - Virtual Continuity of Measurable Functions of Several Variables and Embedding Theorems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 1
EP  - 11
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a0/
LA  - ru
ID  - FAA_2013_47_3_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. B. Zatitskii
%A F. V. Petrov
%T Virtual Continuity of Measurable Functions of Several Variables and Embedding Theorems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 1-11
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a0/
%G ru
%F FAA_2013_47_3_a0
A. M. Vershik; P. B. Zatitskii; F. V. Petrov. Virtual Continuity of Measurable Functions of Several Variables and Embedding Theorems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 3, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_2013_47_3_a0/

[1] L. Kantorovich, “O transportirovke mass”, DAN SSSR, 37:7-8 (1942), 227–229

[2] V. G. Mazya, Prostranstva Soboleva, Izd-vo LGU, L., 1985 | MR

[3] M. Gromov, Metric Structure for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1998 | MR | Zbl

[4] A. Vershik, “Universalnoe prostranstvo Urysona, metricheskie troiki Gromova i sluchainye metriki na naturalnom ryade”, UMN, 53:5 (1998), 57–64 | DOI | MR | Zbl

[5] A. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–28 | DOI | MR | Zbl

[6] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl

[7] A. Vershik, “Random and universal metric spaces”, Dynamics and Randomness II, Kluwer Academic Publ., Dordrecht, 2004, 199–228 | DOI | MR | Zbl

[8] A. M. Vershik, “Sluchainye metricheskie prostrantva i universalnost”, UMN, 59:2(356) (2004), 65–104 | DOI | MR | Zbl

[9] A. Vershik, “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl

[10] A. Vershik, “Kak vyglyadit tipichnyi markovskii operator?”, Algebra i analiz, 17:5 (2005), 91–104 | MR | Zbl

[11] A. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Processes Related Fields, 16:1 (2010), 169–184 | MR | Zbl

[12] P. B. Zatitskii, F. V. Petrov, “Ob ispravlenii metrik”, Zap. nauchn. sem. POMI, 390 (2011), 201–209 | MR

[13] K-T. Sturm, The space of spaces:curvature bounds and gradient flows on the space of metric measure space, Preprint

[14] M. Denker, M. Gordin, Limit theorem for von Mises statistics of a measure preserving transformations, 2011, arXiv: 1109.0635v2 | MR | Zbl

[15] L. Lovasz, Large Networks and Graph Limits, Colloquium Publications, 60, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl

[16] A. Vershik, “O klassifikatsii izmerimykh funktsii neskolkikh peremennykh”, Zap. nauchn. sem. POMI, 403, 2012, 35–57 | MR

[17] F. Petrov, A. Vershik, P. Zatitskiy, “Geometry and dynamics of admissible metrics in measure spaces”, Central Europ. J. Math., 11:3 (2013), 379–400 | DOI | MR | Zbl

[18] A. Vershik, “Long History of Monge-Kantorovich transportation problem”, Mathem. Intellegencer, 35:4 (2013) | DOI | MR