Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a new approach to proving the continuity of asymptotic entropy as a function of a transition measure under a finite first moment condition. It is based on using conditional random walks and amounts to checking uniformity in the strip criterion for the identification of the Poisson boundary. It is applicable to word hyperbolic groups and in several other situations when the Poisson boundary can be identified with an appropriate geometric boundary.
Keywords: random walk, asymptotic entropy, hyperbolic groups.
@article{FAA_2013_47_2_a8,
     author = {V. A. Kaimanovich and A. G. Erschler},
     title = {Continuity of {Asymptotic} {Characteristics} for {Random} {Walks} on {Hyperbolic} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--89},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/}
}
TY  - JOUR
AU  - V. A. Kaimanovich
AU  - A. G. Erschler
TI  - Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 84
EP  - 89
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/
LA  - ru
ID  - FAA_2013_47_2_a8
ER  - 
%0 Journal Article
%A V. A. Kaimanovich
%A A. G. Erschler
%T Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 84-89
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/
%G ru
%F FAA_2013_47_2_a8
V. A. Kaimanovich; A. G. Erschler. Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 84-89. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/

[1] V. A. Kaimanovich, Zap. nauchn. sem. LOMI, 123 (1983), 167–184 | MR | Zbl

[2] V. A. Kaimanovich, Dokl. AN SSSR, 280:5 (1985), 1051–1054 | MR | Zbl

[3] A. M. Vershik, UMN, 55:4(334) (2000), 59–128 | DOI | MR | Zbl

[4] G. Amir, O. Angel, B. Virág, arXiv: 0905.2007

[5] A. Avez, C. R. Acad. Sci. Paris Sér. A-B, 275 (1972), A1363–A1366 | MR

[6] Y. Derriennic, Conference on Random Walks (Kleebach, 1979)), Astérisque, 74, Soc. Math. France, Paris, 1980, 183–201 | MR

[7] A. Erschler, Random walks, boundaries and spectra, Proceedings of the workshop on boundaries, Graz, Austria, June 29–July 3, 2009 and the Alp-workshop, Sankt Kathrein, Austria, July 4–5, 2009, Progress in Probability, 64, eds. Lenz, Daniel et al., Birkhäuser, Basel, 2011, 55–64 | DOI | MR | Zbl

[8] H. Furstenberg, Trans. Amer. Math. Soc., 108 (1963), 377–428 | DOI | MR | Zbl

[9] Sur les groupes hyperboliques d'après Mikhael Gromov, Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988, Progress in Mathematics, 83, eds. É. Ghys, P. de la Harpe, Birkhäuser, Boston, MA, 1990 | MR

[10] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer-Verlag, New York, 1987, 75–263 | DOI | MR

[11] V. A. Kaimanovich, C. R. Acad. Sci. Paris Sér. I Math., 318:1 (1994), 59–64 | MR | Zbl

[12] V. A. Kaimanovich, Ann. of Math. (2), 152:3 (2000), 659–692 | DOI | MR | Zbl

[13] V. A. Kaimanovich, A. M. Vershik, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl

[14] F. Ledrappier, Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes, 28, Amer. Math. Soc., Providence, RI, 2001, 117–152 | DOI | MR | Zbl

[15] F. Ledrappier, arXiv: 1110.3156

[16] F. Ledrappier, Groups Geom. Dyn., 6:2 (2012), 317–333 | DOI | MR | Zbl

[17] P. Mathieu, arXiv: 1209.2020

[18] J. Mairesse, F. Mathéus, J. Lond. Math. Soc. (2), 75:1 (2007), 47–66 | DOI | MR | Zbl