Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 84-89
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a new approach to proving the continuity of asymptotic entropy as a function of a transition measure under a finite first moment condition. It is based on using conditional random walks and amounts to checking uniformity in the strip criterion for the identification of the Poisson boundary. It is applicable to word hyperbolic groups and in several other situations when the Poisson boundary can be identified with an appropriate geometric boundary.
Keywords:
random walk, asymptotic entropy, hyperbolic groups.
@article{FAA_2013_47_2_a8,
author = {V. A. Kaimanovich and A. G. Erschler},
title = {Continuity of {Asymptotic} {Characteristics} for {Random} {Walks} on {Hyperbolic} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {84--89},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/}
}
TY - JOUR AU - V. A. Kaimanovich AU - A. G. Erschler TI - Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 84 EP - 89 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/ LA - ru ID - FAA_2013_47_2_a8 ER -
V. A. Kaimanovich; A. G. Erschler. Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 84-89. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a8/