On Complementability of Subspaces in Symmetric Spaces with the Kruglov Property
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 80-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that, for a broad class of symmetric spaces on $[0,1]$, the complementability of the subspace generated by independent functions $f_k$ $(k=1,2,\dots)$ is equivalent to the complementability of the subspace generated by the disjoint translates $\bar{f}_k(t)=f_k(t-k+1)\chi_{[k-1,k)}(t)$ of these functions in some symmetric space $Z_X^2$ on the semiaxis $[0,\infty)$. Moreover, if $\sum_{k=1}^\infty m(\operatorname{supp}f_k)\le 1$, then
$Z_X^2$ can be replaced by $X$ itself. This result is new even in the case of $L_p$-spaces. A series of consequences is obtained; in particular, for the class of symmetric spaces, a result similar to a well-known theorem of Dor and Starbird on the complementability in $L_p[0,1]$ $(1\le p\infty)$ of the subspace $[f_k]$ generated by independent functions provided that it is isomorphic to the space $l_p$ is obtained.
Keywords:
complemented subspace, independent functions, Rademacher functions, symmetric space, Kruglov property, Boyd indices, lower $p$-estimate.
@article{FAA_2013_47_2_a7,
author = {S. V. Astashkin},
title = {On {Complementability} of {Subspaces} in {Symmetric} {Spaces} with the {Kruglov} {Property}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--84},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a7/}
}
TY - JOUR AU - S. V. Astashkin TI - On Complementability of Subspaces in Symmetric Spaces with the Kruglov Property JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2013 SP - 80 EP - 84 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a7/ LA - ru ID - FAA_2013_47_2_a7 ER -
S. V. Astashkin. On Complementability of Subspaces in Symmetric Spaces with the Kruglov Property. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a7/