Ordinary Semicascades and Their Ergodic Properties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship is considered between ergodic properties of a discrete dynamical system on a compact metric space $\Omega$ and characteristics of companion algebro-topological objects, namely, the Ellis enveloping semigroup $E$, the Köhler enveloping operator semigroup $\Gamma$, and the semigroup $G$ being the closure of the convex hull of $\Gamma$ in the weak-star topology on the operator space $\operatorname{End}C^*(\Omega)$. The main results are formulated for ordinary (having metrizable semigroup $E$) semicascades and for tame dynamical systems determined by the condition $\operatorname{card}E\le\mathfrak c$. A classification of compact semicascades in terms of topological properties of the semigroups specified above is given.
Keywords: semicascade, ergodic properties, nonchaotic dynamics, tame dynamical system, enveloping semigroup
Mots-clés : Choquet simplex.
@article{FAA_2013_47_2_a10,
     author = {A. V. Romanov},
     title = {Ordinary {Semicascades} and {Their} {Ergodic} {Properties}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--96},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a10/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Ordinary Semicascades and Their Ergodic Properties
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 92
EP  - 96
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a10/
LA  - ru
ID  - FAA_2013_47_2_a10
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Ordinary Semicascades and Their Ergodic Properties
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 92-96
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a10/
%G ru
%F FAA_2013_47_2_a10
A. V. Romanov. Ordinary Semicascades and Their Ergodic Properties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 2, pp. 92-96. http://geodesic.mathdoc.fr/item/FAA_2013_47_2_a10/

[1] R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969 | MR | Zbl

[2] A. Köhler, Proc. Roy. Irish Acad. Sect. A, 95:2 (1995), 179–191 | MR | Zbl

[3] A. V. Romanov, Izv. RAN. Ser. matem., 75:6 (2011), 79–98 | DOI | MR | Zbl

[4] E. Glasner, Topology Appl., 154:11 (2007), 2344–2363 | DOI | MR | Zbl

[5] E. Glasner, M. Megrelishvili, Colloq. Math., 104:2 (2006), 223–283 | DOI | MR | Zbl

[6] E. Glasner, Colloq. Math., 105:2 (2006), 283–295 | DOI | MR | Zbl

[7] N. Kryloff, N. Bogoliouboff, Ann. of Math., 38:1 (1937), 65–113 | DOI | MR

[8] R. Felps, Lektsii o teoreme Shoke, Mir, M., 1968

[9] W. Huang, Ergodic Theory Dynam. Systems, 26:5 (2006), 1549–1567 | DOI | MR | Zbl

[10] D. Kerr, H. Li, Math. Ann., 338:4 (2007), 869–926 | DOI | MR | Zbl