On Pairs of Quadratically Related Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing, up to similarity, pairs of quadratically related operators on a finite-dimensional complex linear space is studied.
Keywords: pair of operators, quadratic relation.
@article{FAA_2013_47_1_a8,
     author = {V. L. Ostrovskii and Yu. S. Samoilenko},
     title = {On {Pairs} of {Quadratically} {Related} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--87},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a8/}
}
TY  - JOUR
AU  - V. L. Ostrovskii
AU  - Yu. S. Samoilenko
TI  - On Pairs of Quadratically Related Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 82
EP  - 87
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a8/
LA  - ru
ID  - FAA_2013_47_1_a8
ER  - 
%0 Journal Article
%A V. L. Ostrovskii
%A Yu. S. Samoilenko
%T On Pairs of Quadratically Related Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 82-87
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a8/
%G ru
%F FAA_2013_47_1_a8
V. L. Ostrovskii; Yu. S. Samoilenko. On Pairs of Quadratically Related Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 82-87. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a8/

[1] P. Donovan, M. R. Freislich, The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes, 5, Carleton Univ., Ottawa, 1973 | MR | Zbl

[2] Yu. A. Drozd, Predstavleniya i kvadratichnye formy, In-t matematiki AN USSR, Kiev, 1978, 39–74 | MR

[3] S. A. Kruglyak, Dokl. AN SSSR, 153:6 (1963), 1253–1256 | MR | Zbl

[4] I. M. Gelfand, V. A. Ponomarev, Funkts. analiz i ego pril., 3:4 (1969), 81–82 | MR | Zbl

[5] Yu. A. Drozd, Funkts. analiz i ego pril., 6:4 (1972), 41–43 | MR

[6] V. L. Ostrovskyi, Yu. S. Samoilenko, Introduction to the Theory of Representations of Finitely Presented $*$-Algebras. I. Representations by Bounded Operators, Rev. Math. Math. Phys., 11, no. 1, Gordon Breach, London, 1999 | MR

[7] V. L. Ostrovskii, Yu. S. Samoilenko, Differentsialnaya geometriya, gruppy Li i mekhanika, t. 10, Zap. nauchn. cem. LOMI, 172, 1989, 121–129 | MR

[8] V. L. Ostrovskyĭ, Yu. S. Samoĭlenko, Seminar Sophus Lie, 3 (1993), 185–218 | MR | Zbl

[9] M. V. Akhramovich, M. A. Muratov, Tavricheskii vestnik informatiki i matematiki, 2010, no. 2, 17–25

[10] M. Hoshino, J. Miyachi, Tsukuba J. Math., 12:1 (1988), 65–93 | DOI | MR

[11] Y. Han, J. Algebra, 247:1 (2002), 57–77 | DOI | MR | Zbl

[12] V. Bavula, V. Bekkert, Comm. Algebra, 28:11 (2000), 5067–5100 | DOI | MR | Zbl

[13] I. M. Gelfand, V. A. Ponomarev, UMN, 23:2 (1968), 3–59 | MR