Absence of Conductivity-Type Solitons for the Novikov--Veselov Equation at Zero Energy
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Novikov–Veselov equation (an analogue of the KdV equation in dimension $2+1$) at zero energy does not have sufficiently localized soliton solutions of conductivity type.
Keywords: Novikov–Veselov equation, two-dimensional Schrödinger equation, potentials of conductivity type.
Mots-clés : solitons
@article{FAA_2013_47_1_a7,
     author = {A. V. Kazeykina},
     title = {Absence of {Conductivity-Type} {Solitons} for the {Novikov--Veselov} {Equation} at {Zero} {Energy}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a7/}
}
TY  - JOUR
AU  - A. V. Kazeykina
TI  - Absence of Conductivity-Type Solitons for the Novikov--Veselov Equation at Zero Energy
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 79
EP  - 82
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a7/
LA  - ru
ID  - FAA_2013_47_1_a7
ER  - 
%0 Journal Article
%A A. V. Kazeykina
%T Absence of Conductivity-Type Solitons for the Novikov--Veselov Equation at Zero Energy
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 79-82
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a7/
%G ru
%F FAA_2013_47_1_a7
A. V. Kazeykina. Absence of Conductivity-Type Solitons for the Novikov--Veselov Equation at Zero Energy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a7/

[1] M. Boiti, J. J. P. Leon, M. Manna, F. Pempinelli, Inverse Problems, 3:1 (1987), 25–36 | DOI | MR | Zbl

[2] L. D. Faddeev, Dokl. AN SSSR, 165 (1965), 514–517 | Zbl

[3] P. G. Grinevich, S. P. Novikov, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | MR | Zbl

[4] M. Lassas, J. L. Mueller, S. Siltanen, Comm. Partial Differential Equations, 32:4–6 (2007), 591–610 | DOI | MR | Zbl

[5] S. V. Manakov, UMN, 31:5 (1976), 245–246 | MR | Zbl

[6] A. I. Nachman, Ann. of Math., 143:1 (1995), 71–96 | DOI | MR

[7] R. G. Novikov, Funkts. analiz i ego pril., 22:4 (1988), 11–22 | MR | Zbl

[8] R. G. Novikov, Phys. Lett. A, 375:9 (2011), 1233–1235 | DOI | MR | Zbl

[9] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[10] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[11] T.-Y. Tsai, Inverse Problems, 9:6 (1993), 763–787 | DOI | MR | Zbl