The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The infinity of the rank of ergodic symmetric powers of automorphisms of the Lebesgue space is proved, and sharp upper bounds for their local rank are found.
Mots-clés : ergodic transformation
Keywords: local rank, symmetric tensor product.
@article{FAA_2013_47_1_a10,
     author = {V. V. Ryzhikov},
     title = {The {Local} {Rank} of an {Ergodic} {Symmetric} {Power} $T^{\odot n}$ {Does} {Not} {Exceed} $n!\,n^{-n}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--96},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2013
SP  - 92
EP  - 96
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/
LA  - ru
ID  - FAA_2013_47_1_a10
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2013
%P 92-96
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/
%G ru
%F FAA_2013_47_1_a10
V. V. Ryzhikov. The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 92-96. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/

[1] A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, Univ. Lecture Ser., 30, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[2] J. L. King, J.-P. Thouvenot, J. Analyse Math., 56 (1991), 211–230 | DOI | MR | Zbl

[3] A. A. Prikhodżko, http://arxiv.org/abs/1008.4301

[4] V. V. Ryzhikov, Matem. sb., 183:3 (1992), 133–160 | MR

[5] V. V. Ryzhikov, Funkts. analiz i ego pril., 35:2 (2001), 84–87 | DOI | MR | Zbl

[6] V. V. Ryzhikov, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[7] A. M. Vershik, Discrete Contin. Dynam. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl