The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 92-96
Voir la notice de l'article provenant de la source Math-Net.Ru
The infinity of the rank of ergodic symmetric powers of automorphisms of the Lebesgue space is proved, and
sharp upper bounds for their local rank are found.
Mots-clés :
ergodic transformation
Keywords: local rank, symmetric tensor product.
Keywords: local rank, symmetric tensor product.
@article{FAA_2013_47_1_a10,
author = {V. V. Ryzhikov},
title = {The {Local} {Rank} of an {Ergodic} {Symmetric} {Power} $T^{\odot n}$ {Does} {Not} {Exceed} $n!\,n^{-n}$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {92--96},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/}
}
TY - JOUR
AU - V. V. Ryzhikov
TI - The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2013
SP - 92
EP - 96
VL - 47
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/
LA - ru
ID - FAA_2013_47_1_a10
ER -
V. V. Ryzhikov. The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 47 (2013) no. 1, pp. 92-96. http://geodesic.mathdoc.fr/item/FAA_2013_47_1_a10/