Sharp Interpolation Theorems in Couples of $L_p$ Spaces for Generalized Lions--Peetre Spaces of Means
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp interpolation theorems for linear operators acting on arbitrary couples of $L_p$ spaces are found in the family of generalized Lions–Peetre spaces of means. This family includes the Lorentz spaces with functional quasi-concave parameters, the Orlicz spaces, and spaces similar to them.
Mots-clés : Lebesgue space
Keywords: Lorentz space with functional parameters, Orlicz space, interpolation theorem for linear operators, sharp interpolation theorem, generalized Lions–Peetre space of means.
@article{FAA_2012_46_4_a7,
     author = {V. I. Ovchinnikov},
     title = {Sharp {Interpolation} {Theorems} in {Couples} of $L_p$ {Spaces} for {Generalized} {Lions--Peetre} {Spaces} of {Means}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a7/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
TI  - Sharp Interpolation Theorems in Couples of $L_p$ Spaces for Generalized Lions--Peetre Spaces of Means
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 91
EP  - 94
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a7/
LA  - ru
ID  - FAA_2012_46_4_a7
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%T Sharp Interpolation Theorems in Couples of $L_p$ Spaces for Generalized Lions--Peetre Spaces of Means
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 91-94
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a7/
%G ru
%F FAA_2012_46_4_a7
V. I. Ovchinnikov. Sharp Interpolation Theorems in Couples of $L_p$ Spaces for Generalized Lions--Peetre Spaces of Means. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a7/

[1] J. Bergh, J. Löfström, Interpolation Spaces. Introduction, Springer-Verlag, 1978 | MR

[2] Ju. A. Brudnyi, N. Ya. Krugliak, Interpolation Functors and Interpolation Spaces. I, North Holland, Amsterdam, 1991 | MR | Zbl

[3] Ju. A. Brudnyi, A. Shteinberg, J. Funct. Anal., 131:2 (1995), 459–498 | DOI | MR | Zbl

[4] S. Janson, J. Funct. Anal., 44:1 (1981), 50–73 | DOI | MR | Zbl

[5] J.-L. Lions, J. Peetre, Inst. Hautes Etudes Sci. Publ. Math., 19 (1964), 5–68 | DOI | MR | Zbl

[6] V. A. Dikarev, V. I. Matsaev, Dokl. AN SSSR, 168:5 (1966), 986–988 | MR | Zbl

[7] A. A. Dmitriev, E. M. Semenov, Dokl. AN SSSR, 258:6 (1981), 1298–1300 | MR | Zbl

[8] V. I. Ovchinnikov, Dokl. AN SSSR, 272:2 (1983), 300–303 | MR | Zbl

[9] V. I. Ovchinnikov, C. R. Acad. Sci. Paris. Ser. I, 334:10 (2002), 881–884 | DOI | MR | Zbl

[10] V. I. Ovchinnikov, Algebra i analiz, 22:4 (2010), 214–231 | MR

[11] E. M. Stein, G. Weiss, Trans. Amer. Math. Soc., 87 (1958), 159–172 | DOI | MR | Zbl