On a Certain Class of Commuting Systems of Linear Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 86-90
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we describe the class of commuting pairs of bounded linear operators $\{A_1,A_2\}$ acting on a Hilbert space $H$ which are unitarily equivalent to the system of integrations over independent variables $$ (\widetilde{A}_1f)(x,y)=i\int_x^af(t,y)\,dt,\qquad(\widetilde{A}_2f)(x,y)=i\int_y^bf(x,s)\,ds $$ in $L_{\Omega_L}^2$, where $\Omega_L$ is the compact set in $\mathbb{R}_+^2$ bounded by the lines $x=a$ and $y=b$ and by a decreasing smooth curve $L=\{(x,p(x)):p(x)\in C_{[0,a]}^1,\,p(0)=b,\,p(a)=0\}$.
Keywords:
commutative system of linear non-self-adjoint operators, model approximation, operator with simple spectrum.
@article{FAA_2012_46_4_a6,
author = {V. A. Zolotarev},
title = {On a {Certain} {Class} of {Commuting} {Systems} of {Linear} {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--90},
year = {2012},
volume = {46},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a6/}
}
V. A. Zolotarev. On a Certain Class of Commuting Systems of Linear Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 86-90. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a6/
[1] M. S. Livshits, Matem. sb., 61 (1946), 236–260 | MR | Zbl
[2] M. S. Livshits, A. A. Yantsevich, Teoriya operatornykh uzlov v gilbertovykh prostranstvakh, Izd. Khark. un-ta, Kharkov, 1971 | MR | Zbl
[3] V. A. Zolotarev, Analiticheskie metody spektralnykh predstavlenii nesamosopryazhennykh i neunitarnykh operatorov, Izd. Khark. un-ta, Kharkov, 2003
[4] V. A. Zolotarev, DAN Arm. SSR, 63 (1976), 136–140 | MR
[5] V. A. Zolotarev, Vestnik Khark. un-ta, 43 (1978), 69–76 | MR | Zbl
[6] V. A. Zolotarev, Vestnik Khark. un-ta, 31 (1979), 56–58 | MR | Zbl
[7] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 1, Izd. KhGU, Kharkov, 1977 | MR