A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 14-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a bounded convex domain of the complex plane. We study the problem of whether the fundamental principle holds for analytic function spaces on $D$ invariant with respect to the differentiation operator and admitting spectral synthesis. Earlier this problem was solved under a restriction on the multiplicities of the eigenvalues of the differentiation operator. In the present paper, we lift this restriction. Thus, we present a complete solution of the fundamental principle problem for arbitrary nontrivial closed invariant subspaces admitting spectral synthesis on arbitrary bounded convex domains.
Keywords: analytic function, invariant subspace, fundamental principle.
Mots-clés : convex domain
@article{FAA_2012_46_4_a1,
     author = {O. A. Krivosheeva and A. S. Krivosheev},
     title = {A {Criterion} for the {Fundamental} {Principle} to {Hold} for {Invariant} {Subspaces} on {Bounded} {Convex} {Domains} in the {Complex} {Plane}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--30},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a1/}
}
TY  - JOUR
AU  - O. A. Krivosheeva
AU  - A. S. Krivosheev
TI  - A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 14
EP  - 30
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a1/
LA  - ru
ID  - FAA_2012_46_4_a1
ER  - 
%0 Journal Article
%A O. A. Krivosheeva
%A A. S. Krivosheev
%T A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 14-30
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a1/
%G ru
%F FAA_2012_46_4_a1
O. A. Krivosheeva; A. S. Krivosheev. A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 14-30. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a1/

[1] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[2] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR

[3] I. F. Krasichkov-Ternovskii, “Odnorodnoe uravnenie tipa svertki na vypuklykh oblastyakh”, DAN SSSR, 197:1 (1971), 29–31 | Zbl

[4] A. S. Krivosheev, “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[5] G. Valiron, “Sur les solutions des équations différentielles linéaires d'ordre infini et à coefficients constants”, Ann. Sci. Ecole Norm. Sup., 46:1 (1929), 25–53 | DOI | MR | Zbl

[6] L. Schwartz, “Théorie générale des fonctions moyenne-périodique”, Ann. Math., 48:4 (1947), 857–929 | DOI | MR | Zbl

[7] A. O. Gelfond, “Lineinye differentsialnye uravneniya s postoyannymi koeffitsientami beskonechnogo poryadka i asimptoticheskie periody tselykh funktsii”, Trudy MIAN SSSR, 38, Izd-vo AN SSSR, M., 1951, 42–67 | MR | Zbl

[8] D. G. Dickson, “Expansions in series of solutions of linear difference-differential and infinite order differential equations with constant coefficients”, Mem. Amer. Math. Soc., 1957:23 (1957), 1–72 | MR

[9] B. Ya. Levin, “O nekotorykh prilozheniyakh interpolyatsionnogo ryada Lagranzha k teorii tselykh funktsii”, Matem. sb., 8:3 (1940), 437–454

[10] Yu. F. Korobeinik, “Interpolyatsionnye zadachi, netrivialnye razlozheniya nulya i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1066–1114 | MR | Zbl

[11] Yu. F. Korobeinik, “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl

[12] A. V. Bratischev, Yu. F. Korobeinik, “Interpolyatsionnaya zadacha v prostranstvakh tselykh funktsii zadannogo utochnennogo poryadka”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1102–1127 | MR

[13] A. V. Bratischev, Bazisy Kete, tselye funktsii i ikh prilozheniya, Diss. d.f.-m.n., Rostov-na-Donu, 1995

[14] A. S. Krivosheev, “Kriterii fundamentalnogo printsipa dlya invariantnykh podprostranstv”, Dokl. RAN, 389:4 (2003), 457–460 | MR | Zbl

[15] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[16] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985 | MR

[17] O. A. Krivosheeva, “Ryady eksponentsialnykh monomov v kompleksnykh oblastyakh”, Vestnik UGATU. Matem., 9:3(21) (2007), 96–103, UGATU, Ufa | MR

[18] O. A. Krivosheeva, “Osobye tochki summy ryada eksponent na granitse oblasti skhodimosti”, Ufimskii matem. zh., 1:4 (2009), 78–109 | Zbl

[19] V. V. Napalkov, O. A. Krivosheeva, “Teoremy Abelya i Koshi–Adamara dlya ryadov eksponentsialnykh monomov”, Dokl. RAN, 432:5 (2010), 594–596 | MR | Zbl

[20] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[21] P. Lelon, L. Gruman, Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[22] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956