Multidimensional Bony Attractors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study attractors of skew products, for which the following dichotomy is ascertained. These attractors either are not asymptotically stable or possess the following two surprising properties. The intersection of the attractor with some invariant submanifold does not coincide with the attractor of the restriction of the skew product to this submanifold but contains this restriction as a proper subset. Moreover, this intersection is thick on the submanifold, that is, both the intersection and its complement have positive relative measure. Such an intersection is called a bone, and the attractor itself is said to be bony. These attractors are studied in the space of skew products. They have the important property that, on some open subset of the space of skew products, the set of maps with such attractors is, in a certain sense, prevalent, i.e., “big”. It seems plausible that attractors with such properties also form a prevalent subset in an open subset of the space of diffeomorphisms.
Keywords: attractor, skew product
Mots-clés : invariant set.
@article{FAA_2012_46_4_a0,
     author = {Yu. S. Ilyashenko},
     title = {Multidimensional {Bony} {Attractors}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a0/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
TI  - Multidimensional Bony Attractors
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 1
EP  - 13
VL  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a0/
LA  - ru
ID  - FAA_2012_46_4_a0
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%T Multidimensional Bony Attractors
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 1-13
%V 46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a0/
%G ru
%F FAA_2012_46_4_a0
Yu. S. Ilyashenko. Multidimensional Bony Attractors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2012_46_4_a0/

[1] V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, L. P. Shilnikov, “Teoriya bifurkatsii”, Dinamicheskie sistemy-5, Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, VINITI, M., 1986, 5–218 | MR | Zbl

[2] C. Bonatti, M. Li, D. Yang, On the Existence of Attractors, preprint #568 of Institut Mathématique de Bourgogne, 2009 | MR

[3] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., 470, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl

[4] J. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[5] Yu. S. Ilyashenko, I. S. Shilin, “Uslovno neustoichivye attraktory”, Trudy MIRAN, 277, 91–100 | Zbl

[6] Yu. G. Kudryashov, “Kostistye attraktory”, Funkts. analiz i ego pril., 44:3 (2010), 73–76 | DOI | MR | Zbl

[7] Yu. Kudryashov, Des orbites périodiques et des attracteurs des systémes dynamiques, These, Defended Lyon, ENS, 2010

[8] J. Milnor, “On the concept of attractors”, Comm. Math. Phys., 99:2 (1985), 177–196 | DOI | MR