Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_3_a6, author = {A. A. Dosi}, title = {Bipolar {Theorem} for {Quantum} {Cones}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {84--89}, publisher = {mathdoc}, volume = {46}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a6/} }
A. A. Dosi. Bipolar Theorem for Quantum Cones. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 84-89. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a6/
[1] M. D. Choi, E. G. Effros, J. Funct. Anal., 24:2 (1977), 156–209 | DOI | MR | Zbl
[2] A. A. Dosiev, J. Funct. Anal., 255:7 (2008), 1724–1760 | DOI | MR | Zbl
[3] A. A. Dosiev, C. R. Math. Acad. Sci. Paris, 344:10 (2007), 627–630 | DOI | MR | Zbl
[4] A. A. Dosi, Trans. Amer. Math. Soc., 363:2 (2011), 801–856 | DOI | MR | Zbl
[5] A. A. Dosi, J. Math. Phys., 51:6 (2010), 1–43 | DOI | MR
[6] A. A. Dosi, Inter. J. Math., 22:4 (2011), 1–7 | DOI | MR
[7] E. G. Effros, Z-.J. Ruan, Operator Spaces, Clarendon Press, Oxford, 2000 | MR | Zbl
[8] E. G. Effros, C. Webster, Operator Algebras and Applications (Samos 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997, 163–207 | MR | Zbl
[9] E. G. Effros, S. Winkler, J. Funct. Anal., 144:1 (1997), 117–152 | DOI | MR | Zbl
[10] A. Ya. Khelemskii, Kvantovyi funktsionalnyi analiz v beskoordinatnom izlozhenii, MTsNMO, M., 2009
[11] S. S. Kutateladze, Osnovy funktsionalnogo analiza, izd-vo In-ta matematiki im. S. P. Soboleva, Novosibirsk, 1995 | MR | Zbl
[12] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Boston, MA, 1990 | MR | Zbl
[13] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies Advanced Math., 78, Cambridge University Press, Cambridge, 2002 | MR | Zbl