Bipolar Theorem for Quantum Cones
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note duality properties of quantum cones are investigated. We propose a bipolar theorem for quantum cones, which provides a new proof of the operator bipolar theorem proved by Effros and Webster. In particular, a representation theorem for a quantum cone is proved.
Keywords: quantum cones, absolutely matrix convex set, quantum system.
@article{FAA_2012_46_3_a6,
     author = {A. A. Dosi},
     title = {Bipolar {Theorem} for {Quantum} {Cones}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--89},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a6/}
}
TY  - JOUR
AU  - A. A. Dosi
TI  - Bipolar Theorem for Quantum Cones
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 84
EP  - 89
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a6/
LA  - ru
ID  - FAA_2012_46_3_a6
ER  - 
%0 Journal Article
%A A. A. Dosi
%T Bipolar Theorem for Quantum Cones
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 84-89
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a6/
%G ru
%F FAA_2012_46_3_a6
A. A. Dosi. Bipolar Theorem for Quantum Cones. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 84-89. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a6/

[1] M. D. Choi, E. G. Effros, J. Funct. Anal., 24:2 (1977), 156–209 | DOI | MR | Zbl

[2] A. A. Dosiev, J. Funct. Anal., 255:7 (2008), 1724–1760 | DOI | MR | Zbl

[3] A. A. Dosiev, C. R. Math. Acad. Sci. Paris, 344:10 (2007), 627–630 | DOI | MR | Zbl

[4] A. A. Dosi, Trans. Amer. Math. Soc., 363:2 (2011), 801–856 | DOI | MR | Zbl

[5] A. A. Dosi, J. Math. Phys., 51:6 (2010), 1–43 | DOI | MR

[6] A. A. Dosi, Inter. J. Math., 22:4 (2011), 1–7 | DOI | MR

[7] E. G. Effros, Z-.J. Ruan, Operator Spaces, Clarendon Press, Oxford, 2000 | MR | Zbl

[8] E. G. Effros, C. Webster, Operator Algebras and Applications (Samos 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997, 163–207 | MR | Zbl

[9] E. G. Effros, S. Winkler, J. Funct. Anal., 144:1 (1997), 117–152 | DOI | MR | Zbl

[10] A. Ya. Khelemskii, Kvantovyi funktsionalnyi analiz v beskoordinatnom izlozhenii, MTsNMO, M., 2009

[11] S. S. Kutateladze, Osnovy funktsionalnogo analiza, izd-vo In-ta matematiki im. S. P. Soboleva, Novosibirsk, 1995 | MR | Zbl

[12] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Boston, MA, 1990 | MR | Zbl

[13] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies Advanced Math., 78, Cambridge University Press, Cambridge, 2002 | MR | Zbl