Closed Form Algebra on a Disk is Koszul
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the algebra of closed differential forms on an (algebraic, formal, or analytic) disk with logarithmic singularities along several coordinate hyperplanes is Koszul (both nontopologically and topologically). A relation to variations of mixed Hodge–Tate structures is discussed in the introduction.
Keywords: closed differential form with logarithmic singularities, mixed Hodge–Tate sheave, topological Koszulity.
Mots-clés : Koszul algebra, Koszul module, quasi-algebra with external multiplication
@article{FAA_2012_46_3_a4,
     author = {L. E. Positsel'skii},
     title = {Closed {Form} {Algebra} on a {Disk} is {Koszul}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a4/}
}
TY  - JOUR
AU  - L. E. Positsel'skii
TI  - Closed Form Algebra on a Disk is Koszul
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 71
EP  - 80
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a4/
LA  - ru
ID  - FAA_2012_46_3_a4
ER  - 
%0 Journal Article
%A L. E. Positsel'skii
%T Closed Form Algebra on a Disk is Koszul
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 71-80
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a4/
%G ru
%F FAA_2012_46_3_a4
L. E. Positsel'skii. Closed Form Algebra on a Disk is Koszul. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 71-80. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a4/

[1] A. Beilinson, V. Ginzburg, W. Soergel, “Koszul duality patterns in representation theory”, J. Amer. Math. Soc., 9:2 (1996), 473–527 | DOI | MR | Zbl

[2] A. Levin, Note on $\mathbb R$-Hodge–Tate sheaves, Max Planck Institute for Mathematics Preprint, MPIM2001-37 http://www.mpim-bonn.mpg.de/preprints

[3] L. Positselski, A. Vishik, “Koszul duality and Galois cohomology”, Math. Res. Lett., 2:6 (1995), 771–781, arXiv: alg-geom/9507010 | DOI | MR | Zbl

[4] L. Positselski, “Koszul property and Bogomolov's conjecture”, Int. Math. Res. Notices, 2005:31 (2005), 1901–1936 | DOI | MR | Zbl

[5] A. Polishchuk, L. Positselski, Quadratic Algebras, University Lecture Series, 37, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[6] S. Priddy, “Koszul resolutions”, Trans. Amer. Math. Soc., 152:1 (1970), 39–60 | DOI | MR | Zbl