A Joint Spectral Mapping Theorem for Sets of Semigroup Generators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the context of the multidimensional functional calculus of semigroup generators, which is based on the class of Bernstein functions in several variables (and is also known as Bochner–Phillips multidimensional functional calculus), a spectral mapping theorem for the Taylor spectrum of a set of commuting generators is proved.
Keywords: multiparameter semigroup of operators, multidimensional functional calculus, Taylor spectrum, Bernstein function, spectral mapping theorem.
@article{FAA_2012_46_3_a3,
     author = {A. R. Mirotin},
     title = {A {Joint} {Spectral} {Mapping} {Theorem} for {Sets} of {Semigroup} {Generators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a3/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - A Joint Spectral Mapping Theorem for Sets of Semigroup Generators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 62
EP  - 70
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a3/
LA  - ru
ID  - FAA_2012_46_3_a3
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T A Joint Spectral Mapping Theorem for Sets of Semigroup Generators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 62-70
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a3/
%G ru
%F FAA_2012_46_3_a3
A. R. Mirotin. A Joint Spectral Mapping Theorem for Sets of Semigroup Generators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 62-70. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a3/

[1] A. Kishimoto, D. Robinson, “Subordinate semigroups and order properties”, J. Austral. Math. Soc. Ser. A, 31:1 (1981), 59–76 | DOI | MR | Zbl

[2] Ch. Berg, K. Boyadzhiev, R. deLaubenfels, “Generation of generators of holomorphic semigroups”, J. Austral. Math. Soc. Ser. A, 55:2 (1993), 246–269 | DOI | MR | Zbl

[3] A. S. Carasso, T. Kato, “On subordinated holomorphic semigroups”, Trans. Amer. Math. Soc., 327:2 (1991), 867–878 | DOI | MR | Zbl

[4] A. R. Mirotin, “O $\mathcal{T}$-ischislenii generatorov $C_0$-polugrupp”, Sib. matem. zh., 39:3 (1998), 571–582 | MR | Zbl

[5] R. Shilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, de Greyter, Berlin–New York, 2010 | MR

[6] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | MR

[7] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[8] D. Applebaum, “Levy processes—from probability to finance and quantum groups”, Notices Amer. Math. Soc., 51:11 (2004), 1336–1347 | MR | Zbl

[9] A. R. Mirotin, “Deistvie funktsii klassa Shenberga $\mathcal{T}$ na konuse dissipativnykh elementov banakhovoi algebry”, Matem. zametki, 61:4 (1997), 630–633 | DOI | MR | Zbl

[10] A. R. Mirotin, “Funktsii klassa Shenberga $\mathcal{T}$ deistvuyut v konuse dissipativnykh elementov banakhovoi algebry, II”, Matem. zametki, 64:3 (1998), 423–430 | DOI | MR | Zbl

[11] A. R. Mirotin, “Mnogomernoe $\mathcal{T}$-ischislenie ot generatorov $C_0$-polugrupp”, Algebra i analiz, 11:2 (1999), 142–170 | MR

[12] Ch. Berg, J. P. R. Christensen, P. Ressel, Harmonic Analysis on Semigroups, Graduate Texts in Math., 100, Springer-Verlag, New York–Berlin, 1984 | DOI | MR | Zbl

[13] A. R. Mirotin, “O mnogomernom funktsionalnom ischislenii Bokhnera–Fillipsa”, Problemy fiziki, matematiki i tekhniki, 1:1 (2009), 63–66

[14] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[15] Dzh. Goldstein, Polugruppy lineinykh operatorov i ikh prilozheniya, Vysshaya shkola, Kiev, 1989 | MR

[16] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[17] Z. Slodkowski, W. Zelazko, “On joint spectra of commuting families of operators”, Studia Math., 50 (1974), 127–148 | DOI | MR | Zbl

[18] F. Klement, Kh. Kheimans, S. Angenent i dr., Odnoparametricheskie polugruppy, Mir, M., 1992 | MR

[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[20] A. Ya. Khelemskii, “Gomologicheskie metody v golomorfnom ischislenii ot neskolkikh operatorov v banakhovom prostranstve, po Teiloru”, UMN, 36:1(217) (1981), 127–172 | MR | Zbl

[21] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Funct. Anal., 6:2 (1970), 172–191 | DOI | MR | Zbl