Structure of Groups of Circle Diffeomorphisms with the Property of Fixing Nonexpandable Points
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 38-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of groups of circle diffeomorphisms with the property of fixing nonexpandable points. This property generalizes the local expansivity property, and at present there are no known examples of minimal $C^2$ actions of finitely generated groups of circle diffeomorphisms for which this generalized property does not hold. It turns out that if this property holds for a group action and there is at least one nonexpandable point, then the action admits a rather restrictive characterization. In particular, for such an action, we prove the existence of a Markov partition, and the structure of the action turns out to be similar to that of the Thompson group.
Keywords: dynamical system, circle diffeomorphism
Mots-clés : group action, Markov partition.
@article{FAA_2012_46_3_a2,
     author = {V. A. Kleptsyn and D. A. Filimonov},
     title = {Structure of {Groups} of {Circle} {Diffeomorphisms} with the {Property} of {Fixing} {Nonexpandable} {Points}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--61},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a2/}
}
TY  - JOUR
AU  - V. A. Kleptsyn
AU  - D. A. Filimonov
TI  - Structure of Groups of Circle Diffeomorphisms with the Property of Fixing Nonexpandable Points
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 38
EP  - 61
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a2/
LA  - ru
ID  - FAA_2012_46_3_a2
ER  - 
%0 Journal Article
%A V. A. Kleptsyn
%A D. A. Filimonov
%T Structure of Groups of Circle Diffeomorphisms with the Property of Fixing Nonexpandable Points
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 38-61
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a2/
%G ru
%F FAA_2012_46_3_a2
V. A. Kleptsyn; D. A. Filimonov. Structure of Groups of Circle Diffeomorphisms with the Property of Fixing Nonexpandable Points. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 38-61. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a2/

[1] R. Bowen, “Invariant measures for Markov maps on the interval”, Comm. Math. Phys., 69:1 (1979), 1–17 | DOI | MR | Zbl

[2] R. Bowen, C. Series, “Markov maps associated with Fuchsian groups”, Pub. Math. IHES, 50:1 (1979), 153–170 | DOI | MR | Zbl

[3] J. Cantwell, L. Conlon, “Foliations and subshifts”, Tôhoku Math. J., 40:2 (1988), 165–187 | DOI | MR | Zbl

[4] B. Deroin, V. Kleptsyn, A. Navas, “On the question of ergodicity for minimal group actions on the circle”, Mosc. Math. J., 9:2 (2009), 263–303 | DOI | MR | Zbl

[5] B. Deroin, V. Kleptsyn, A. Navas, “Sur la dynamique unidimensionnelle en régularité intermédiaire”, Acta Math., 199:2 (2007), 199–262 | DOI | MR | Zbl

[6] É. Ghys, V. Sergiescu, “Sur un groupe remarquable de difféomorphismes du cercle”, Comment. Math. Helv., 62:2 (1987), 185–239 | DOI | MR | Zbl

[7] Y. Guivarc'h, Y. Le Jan, “Asymptotic winding of the geodesic flow on modular surfaces and continued fractions”, Ann. Sc. Ec. Norm. Sup. (4), 26:1 (1993), 23–50 | DOI | MR | Zbl

[8] Y. Guivarc'h, C. R. E. Raja, Recurrence and ergodicity of random walks on linear groups and on homogeneous spaces, arXiv: 0908.0637 | MR

[9] M.-R. Herman, “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Publ. Math. de l'IHES, 49 (1979), 5–234 | DOI | MR

[10] S. Hurder, “Exceptional minimal sets and the Godbillon–Vey class”, Annales de l'Institut Fourier (Grenoble) (to appear)

[11] T. Inoue, “Ratio ergodic theorems for maps with indifferent fixed points”, Ergodic Theory Dynam. Systems, 17:3 (1997), 625–642 | DOI | MR | Zbl

[12] A. B. Katok, B. Khasselblat, Vvedenie v teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005

[13] V. A. Kleptsyn, D. A. Filimonov, “Pokazateli Lyapunova i drugie svoistva N-grupp”, Trudy MMO, 73, no. 1, 2012 | Zbl

[14] Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl

[15] A. Navas, “Sur les groupes de difféomorphismes du cercle engendrés par des éléments proches des rotations”, Enseign. Math., 50:1–2 (2004), 29–68 | MR | Zbl

[16] Groups of circle diffeomorphisms, arXiv: math/0607481 | MR | Zbl

[17] M. Shub, D. Sullivan, “Expanding endomorphisms of the circle revisited”, Ergodic Theory Dynam. Systems, 5:2 (1985), 285–289 | DOI | MR | Zbl