Polynomial Dynamical Systems and Ordinary Differential Equations Associated with the Heat Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 16-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogeneous polynomial dynamical systems in $n$-space. To any such system our construction matches a nonlinear ordinary differential equation and an algorithm for constructing a solution of the heat equation. The classical solution given by the Gaussian function corresponds to the case $n=0$, while solutions defined by the elliptic theta-function lead to the Chazy-3 equation and correspond to the case $n=2$. We explicitly describe the family of ordinary differential equations arising in our approach and its relationship with the wide-known Darboux–Halphen quadratic dynamical systems and their generalizations.
Keywords: polynomial dynamical systems, heat equation, Chazy equation, Darboux–Halphen system.
@article{FAA_2012_46_3_a1,
     author = {E. Yu. Bunkova and V. M. Buchstaber},
     title = {Polynomial {Dynamical} {Systems} and {Ordinary} {Differential} {Equations} {Associated} with the {Heat} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--37},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a1/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
AU  - V. M. Buchstaber
TI  - Polynomial Dynamical Systems and Ordinary Differential Equations Associated with the Heat Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 16
EP  - 37
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a1/
LA  - ru
ID  - FAA_2012_46_3_a1
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%A V. M. Buchstaber
%T Polynomial Dynamical Systems and Ordinary Differential Equations Associated with the Heat Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 16-37
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a1/
%G ru
%F FAA_2012_46_3_a1
E. Yu. Bunkova; V. M. Buchstaber. Polynomial Dynamical Systems and Ordinary Differential Equations Associated with the Heat Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 16-37. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a1/

[1] E. Yu. Bunkova, V. M. Bukhshtaber, “Uravneniya teploprovodnosti i semeistva dvumernykh sigma-funktsii”, Geometriya, topologiya i matematicheskaya fizika. II, Sb. statei. K 70-letiyu so dnya rozhdeniya akademika S. P. Novikova, Trudy MIAN, 266, MAIK, M., 2009, 5–32 | MR | Zbl

[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[3] P. Kont, M. Myuzett, Metod Penleve i ego prilozheniya, RKhD, Moskva–Izhevsk, 2011

[4] V. M. Bukhshtaber, D. V. Leikin, M. V. Pavlov, “Egorovskie gidrodinamicheskie tsepochki, uravnenie Shazi i gruppa $SL(2, \mathbb{C})$”, Funkts. analiz i ego pril., 37:4 (2003), 13–26 | DOI | MR | Zbl

[5] S. Chakravarty, M. J. Ablowitz, P. A. Clarkson, “Reductions of self-dual Yang-Mills fields and classical systems”, Phys. Rev. Lett., 65:9 (1990), 1085–1087 | DOI | MR | Zbl

[6] B. Dubrovin, “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | DOI | MR | Zbl

[7] P. A. Clarkson, P. J. Olver, “Symmetry and the Chazy equation”, J. Differential Equations, 124:1 (1996), 225–246 | DOI | MR | Zbl

[8] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, ch. 2. Transtsendentnye funktsii, URSS, M., 2010

[9] “Perepiska S. V. Kovalevskoi i G. Mittag-Lefflera”, Nauchnoe nasledstvo, 7, Nauka, M., 1984, Pismo 57 | MR

[10] S. Chakravarty, R. G. Halburd, “First integrals and gradient flow for a generalized Darboux–Halphen system”, Contemp. Math., 301, Amer. Math. Soc., Providence, RI, 2002, 273–281 | DOI | MR | Zbl

[11] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251, Nauka, M., 2005, 54–126 | MR