Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

For all spherical homogeneous spaces $G/H$, where $G$ is a simply connected semisimple algebraic group and $H$ a connected solvable subgroup of $G$, we compute the spectra of representations of $G$ on spaces of regular sections of homogeneous line bundles over $G/H$.
Mots-clés : algebraic group
Keywords: homogeneous space, spherical subgroup, representation, semigroup.
@article{FAA_2012_46_3_a0,
     author = {R. S. Avdeev and N. E. Gorfinkel},
     title = {Harmonic {Analysis} on {Spherical} {Homogeneous} {Spaces} with {Solvable} {Stabilizer}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a0/}
}
TY  - JOUR
AU  - R. S. Avdeev
AU  - N. E. Gorfinkel
TI  - Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 1
EP  - 15
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a0/
LA  - ru
ID  - FAA_2012_46_3_a0
ER  - 
%0 Journal Article
%A R. S. Avdeev
%A N. E. Gorfinkel
%T Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 1-15
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a0/
%G ru
%F FAA_2012_46_3_a0
R. S. Avdeev; N. E. Gorfinkel. Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 3, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2012_46_3_a0/

[1] E. B. Vinberg, B. N. Kimelfeld, “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li”, Funkts. analiz i ego pril., 12:3 (1978), 12–19 | MR

[2] R. S. Avdeev, “Rasshirennye polugruppy starshikh vesov affinnykh sfericheskikh odnorodnykh prostranstv neprostykh poluprostykh algebraicheskikh grupp”, Izv. RAN. Ser. matem., 74:6 (2010), 3–26 | DOI | MR | Zbl

[3] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl

[4] F. Knop, “Weylgruppe und Momentabbildung”, Invent. Math., 99:1 (1990), 1–23 | DOI | MR | Zbl

[5] N. E. Gorfinkel, “Garmonicheskii analiz na nekotorom klasse sfericheskikh odnorodnykh prostranstv”, Matem. zametki, 90:5 (2011), 703–711 | DOI | MR | Zbl

[6] D. I. Panyushev, “Complexity and rank of homogeneous spaces”, Geom. Dedicata, 34:3 (1990), 249–269 | DOI | MR | Zbl

[7] R. S. Avdeev, “O razreshimykh sfericheskikh podgruppakh poluprostykh algebraicheskikh grupp”, Trudy MMO, 72, no. 1, 2011, 5–62

[8] V. L. Popov, “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. matem., 38:2 (1974), 294–322 | Zbl

[9] D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer-Verlag, Berlin–Heidelberg, 2011 | DOI | MR | Zbl

[10] D. I. Panyushev, “Complexity and nilpotent orbits”, Manuscripta Math., 83 (1994), 223–237 | DOI | MR | Zbl

[11] P.-L. Montagard, “Une nouvelle propriété de stabilité du pléthysme”, Comm. Math. Helvetici, 71:3 (1996), 475–505 | DOI | MR | Zbl

[12] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–309 | MR