Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 89-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space $X$ being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.
Keywords: reproducing kernel Hilbert spaces, positive definite kernels, Mercer's theory.
@article{FAA_2012_46_2_a8,
     author = {V. A. Menegatto and J. C. Ferreira},
     title = {Reproducing {Kernel} {Hilbert} {Spaces} {Associated} with {Kernels} on {Topological} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {89--91},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/}
}
TY  - JOUR
AU  - V. A. Menegatto
AU  - J. C. Ferreira
TI  - Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 89
EP  - 91
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/
LA  - ru
ID  - FAA_2012_46_2_a8
ER  - 
%0 Journal Article
%A V. A. Menegatto
%A J. C. Ferreira
%T Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 89-91
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/
%G ru
%F FAA_2012_46_2_a8
V. A. Menegatto; J. C. Ferreira. Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 89-91. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/

[1] J. Buescu, J. Math. Anal. Appl., 296:1 (2004), 244–255 | DOI | MR | Zbl

[2] F. Cucker, S. Smale, Bull. Amer. Math. Soc. (N.S.), 39:1 (2002), 1–49 | DOI | MR | Zbl

[3] J. C. Ferreira, V. A. Menegatto, Integral Equation Operator Theory, 64:1 (2009), 61–81 | DOI | MR | Zbl

[4] Hongwei Sun, J. Complexity, 21:3 (2005), 337–349 | DOI | MR | Zbl

[5] Hongwei Sun, Qiang Wu, Math. Comput. Modelling, 49:1–2 (2009), 276–285 | MR | Zbl