Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 89-91
Cet article a éte moissonné depuis la source Math-Net.Ru
We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space $X$ being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.
Keywords:
reproducing kernel Hilbert spaces, positive definite kernels, Mercer's theory.
@article{FAA_2012_46_2_a8,
author = {V. A. Menegatto and J. C. Ferreira},
title = {Reproducing {Kernel} {Hilbert} {Spaces} {Associated} with {Kernels} on {Topological} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {89--91},
year = {2012},
volume = {46},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/}
}
TY - JOUR AU - V. A. Menegatto AU - J. C. Ferreira TI - Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2012 SP - 89 EP - 91 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/ LA - ru ID - FAA_2012_46_2_a8 ER -
V. A. Menegatto; J. C. Ferreira. Reproducing Kernel Hilbert Spaces Associated with Kernels on Topological Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 89-91. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a8/
[1] J. Buescu, J. Math. Anal. Appl., 296:1 (2004), 244–255 | DOI | MR | Zbl
[2] F. Cucker, S. Smale, Bull. Amer. Math. Soc. (N.S.), 39:1 (2002), 1–49 | DOI | MR | Zbl
[3] J. C. Ferreira, V. A. Menegatto, Integral Equation Operator Theory, 64:1 (2009), 61–81 | DOI | MR | Zbl
[4] Hongwei Sun, J. Complexity, 21:3 (2005), 337–349 | DOI | MR | Zbl
[5] Hongwei Sun, Qiang Wu, Math. Comput. Modelling, 49:1–2 (2009), 276–285 | MR | Zbl