Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 66-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the standard Riemannian metric of constant curvature $K=-1$ be given on a compact Riemannian surface of genus $g>1$. Under this condition, for a class of strictly hyperbolic Fuchsian groups, we obtain an explicit expression for the spectral counting function of the Laplace operator in the form of a series over the zeros of the Selberg zeta function.
Keywords: Selberg zeta function, spectral counting function, strictly hyperbolic group.
@article{FAA_2012_46_2_a6,
     author = {D. A. Popov},
     title = {Explicit {Formula} for the {Spectral} {Counting} {Function} of the {Laplace} {Operator} on a {Compact} {Riemannian} {Surface} of {Genus} $g>1$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--82},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 66
EP  - 82
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/
LA  - ru
ID  - FAA_2012_46_2_a6
ER  - 
%0 Journal Article
%A D. A. Popov
%T Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 66-82
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/
%G ru
%F FAA_2012_46_2_a6
D. A. Popov. Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 66-82. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/