Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2012_46_2_a6, author = {D. A. Popov}, title = {Explicit {Formula} for the {Spectral} {Counting} {Function} of the {Laplace} {Operator} on a {Compact} {Riemannian} {Surface} of {Genus} $g>1$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {66--82}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/} }
TY - JOUR AU - D. A. Popov TI - Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2012 SP - 66 EP - 82 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/ LA - ru ID - FAA_2012_46_2_a6 ER -
%0 Journal Article %A D. A. Popov %T Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$ %J Funkcionalʹnyj analiz i ego priloženiâ %D 2012 %P 66-82 %V 46 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/ %G ru %F FAA_2012_46_2_a6
D. A. Popov. Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 66-82. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a6/
[1] A. E. Ingam, Raspredelenie prostykh chisel, Glavnaya redaktsiya obschetekhnicheskoi literatury i nomografii, M.-L., 1936
[2] H. M. Edwards, Riemann's Zeta-Function, Academic Press, New York, 1974 | MR | Zbl
[3] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR
[4] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[5] Yu. M. Manin, A. A. Panchishkin, Vvedenie v sovremennuyu teoriyu chisel, MTsNMO, M., 2009 | MR
[6] S. Leng, Algebraicheskie chisla, Mir, M., 1966 | MR
[7] C. J. Moreno, “Explicit formulas in the theory of automorphic forms”, Number Theory Day, Proc. Conf. Rockefeller Univ., New York, Lecture Notes in Math., 626, Springer-Verlag, Berlin, 1977, 73–216 | DOI | MR
[8] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta-function”, Duke Math. J., 43:3 (1976), 441–481 | DOI | MR
[9] D. A. Hejhal, The Selberg Trace Formula for $PSL(2,\mathbb{R})$, V. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[10] A. B. Venkov, “Spektralnaya teoriya avtomorfnykh funktsii, dzeta-funktsiya Selberga i nekotorye problemy analiticheskoi teorii chisel i matematicheskoi fiziki”, UMN, 34:3 (1979), 69–135 | MR | Zbl
[11] B. Randol, “A Dirichlet series of eigenvalue type with applications to asymptotic estimates”, Bull. London Math. Soc., 13:4 (1981), 309–315 | DOI | MR | Zbl
[12] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statisticheskie svoistva spektrov operatorov Laplasa–Beltrami na poverkhnostyakh Liuvillya”, UMN, 48:4 (1993), 3-130 | MR | Zbl
[13] W. Luo, P. Sarnak, “Number variance for arithmetic hyperbolic surface”, Comm. Math. Phys, 161:2 (1994), 419–432 | DOI | MR | Zbl
[14] S. Geninska, E. Leuzinger, “A geometric characterization of arithmetic Fuchsian groups”, Duke Math. J., 142:1 (2008), 112–125 | DOI | MR
[15] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR
[16] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya. Funktsii parabolicheskogo tsilindra. Ortogonalnye mnogochleny, Nauka, M., 1966 | MR
[17] V. V. Golovchanskii, “Asimptotika spektralnoi funktsii operatora Laplasa–Beltrami dlya kokompaktnykh diskretnykh podgrupp $SL_2(\mathbb{R})$”, Matem. sb., 189:7 (1998), 23–36 | DOI | MR | Zbl
[18] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl