Mots-clés : spectra
@article{FAA_2012_46_2_a2,
author = {R. S. Ismagilov},
title = {A {Formula} for the {Spectra} of {Differential} {Operators} on {Graphs}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {17--23},
year = {2012},
volume = {46},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a2/}
}
R. S. Ismagilov. A Formula for the Spectra of Differential Operators on Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 17-23. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a2/
[1] J.-P. Roth, “Le spectre du laplacien sur un graph”, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., 1096, Springer-Verlag, Berlin, 1984, 521–539 | DOI | MR
[2] P. Kurasov, M. Novaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl
[3] B. Gutkin, U. Smilansky, “Can one hear the shape of a graph?”, J. Phys. A, 34:31 (2001), 6061–6068 | DOI | MR | Zbl
[4] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005 | MR | Zbl
[5] V. I. Arnold, “Topologiya algebry: kombinatorika operatsii vozvedeniya v kvadrat”, Funkts. analiz i ego pril., 37:3 (2003), 20–35 | DOI | MR | Zbl