A Formula for the Spectra of Differential Operators on Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a connected undirected finite graph and a spectral problem generated by the double differentiation of functions on its edges (under usual conditions on the vertices ensuring the self-adjointness of the problem). We introduce, in a standard way, an entire function vanishing at the nonzero eigenvalues of the problem and give an explicit formula for this function, which involves graphs (introduced by V. I. Arnold) generated by a self-mapping of a finite set.
Keywords: differential operators, graph, cycle, tree.
Mots-clés : spectra
@article{FAA_2012_46_2_a2,
     author = {R. S. Ismagilov},
     title = {A {Formula} for the {Spectra} of {Differential} {Operators} on {Graphs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a2/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - A Formula for the Spectra of Differential Operators on Graphs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 17
EP  - 23
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a2/
LA  - ru
ID  - FAA_2012_46_2_a2
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T A Formula for the Spectra of Differential Operators on Graphs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 17-23
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a2/
%G ru
%F FAA_2012_46_2_a2
R. S. Ismagilov. A Formula for the Spectra of Differential Operators on Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 2, pp. 17-23. http://geodesic.mathdoc.fr/item/FAA_2012_46_2_a2/

[1] J.-P. Roth, “Le spectre du laplacien sur un graph”, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., 1096, Springer-Verlag, Berlin, 1984, 521–539 | DOI | MR

[2] P. Kurasov, M. Novaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl

[3] B. Gutkin, U. Smilansky, “Can one hear the shape of a graph?”, J. Phys. A, 34:31 (2001), 6061–6068 | DOI | MR | Zbl

[4] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005 | MR | Zbl

[5] V. I. Arnold, “Topologiya algebry: kombinatorika operatsii vozvedeniya v kvadrat”, Funkts. analiz i ego pril., 37:3 (2003), 20–35 | DOI | MR | Zbl