Quasi-Contractions on a Nonnormal Cone Metric Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 75-79
Voir la notice de l'article provenant de la source Math-Net.Ru
Ilić and Rakočević [Appl. Math. Lett., 22:5 (2009), 728–731] proved a fixed point theorem for quasi-contractive mappings on cone metric spaces when the underlying cone is normal. Recently, Z. Kadelburg, S. Radenović, and V. Rakočević obtained a similar result without using the normality condition but only for a contractive constant $\lambda\in(0,1/2)$ [Appl. Math. Lett., 22:11 (2009), 1674–1679]. In this note, using a new method of proof, we prove this theorem for any contractive constant $\lambda \in (0,1)$.
Keywords:
fixed point, cone metric space
Mots-clés : quasi-contraction.
Mots-clés : quasi-contraction.
@article{FAA_2012_46_1_a7,
author = {L. Gaji\'c and V. Rako\v{c}evi\'c},
title = {Quasi-Contractions on a {Nonnormal} {Cone} {Metric} {Space}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {75--79},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a7/}
}
L. Gajić; V. Rakočević. Quasi-Contractions on a Nonnormal Cone Metric Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 75-79. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a7/