Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(M^n,g)$ be a compact Riemannian manifold with convex boundary, let $d\mu=e^{h(x)}\,dV(x)$ be a weighted measure on $M$, and let $\Delta_{\mu,p}$ be the corresponding weighted $p$-Laplacian on $M$. We obtain a lower bound for the first nonzero Neumann eigenvalue of $\Delta_{\mu,p}$.
Keywords: weighted $p$-Laplacian, Bakry–Émery curvature, Neumann eigenvalue.
Mots-clés : gradient estimate
@article{FAA_2012_46_1_a6,
     author = {W. Lin-Feng and Zh. Yue-Ping},
     title = {Eigenvalue {Estimate} for a {Weighted} $\boldsymbol{p}${-Laplacian} on {Compact} {Manifolds} with {Boundary}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {70--75},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/}
}
TY  - JOUR
AU  - W. Lin-Feng
AU  - Zh. Yue-Ping
TI  - Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 70
EP  - 75
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/
LA  - ru
ID  - FAA_2012_46_1_a6
ER  - 
%0 Journal Article
%A W. Lin-Feng
%A Zh. Yue-Ping
%T Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 70-75
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/
%G ru
%F FAA_2012_46_1_a6
W. Lin-Feng; Zh. Yue-Ping. Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 70-75. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/

[1] L. C. Evans, J. Differential Equations, 45:3 (1982), 356–373 | DOI | MR | Zbl

[2] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001 | MR | Zbl

[3] B. Hein, Calc. Var. Partial Differential Equations, 28:2 (2007), 249–273 | DOI | MR | Zbl

[4] G. Huisken, T. Ilmanen, J. Differential Geom., 59:3 (2001), 353–437 | DOI | MR | Zbl

[5] J. Kinnunen, T. Kuusi, Math Ann., 337:3 (2007), 705–728 | DOI | MR | Zbl

[6] R. Scheon, S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994 | MR

[7] J. Serrin, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[8] P. Tolksdorf, J. Differential Equations, 51:1 (1984), 126–150 | DOI | MR | Zbl

[9] L.-F. Wang, Ann. Global Anal. Geom., 37:4 (2010), 393–402 | DOI | MR | Zbl