Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 70-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(M^n,g)$ be a compact Riemannian manifold with convex boundary, let $d\mu=e^{h(x)}\,dV(x)$ be a weighted measure on $M$, and let $\Delta_{\mu,p}$ be the corresponding weighted $p$-Laplacian on $M$. We obtain a lower bound for the first nonzero Neumann eigenvalue of $\Delta_{\mu,p}$.
Keywords: weighted $p$-Laplacian, Bakry–Émery curvature, Neumann eigenvalue.
Mots-clés : gradient estimate
@article{FAA_2012_46_1_a6,
     author = {W. Lin-Feng and Zh. Yue-Ping},
     title = {Eigenvalue {Estimate} for a {Weighted} $\boldsymbol{p}${-Laplacian} on {Compact} {Manifolds} with {Boundary}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {70--75},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/}
}
TY  - JOUR
AU  - W. Lin-Feng
AU  - Zh. Yue-Ping
TI  - Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 70
EP  - 75
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/
LA  - ru
ID  - FAA_2012_46_1_a6
ER  - 
%0 Journal Article
%A W. Lin-Feng
%A Zh. Yue-Ping
%T Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 70-75
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/
%G ru
%F FAA_2012_46_1_a6
W. Lin-Feng; Zh. Yue-Ping. Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 70-75. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a6/