Necessary and Sufficient Conditions for the Solvability of the Inverse Problem for the Matrix Sturm--Liouville Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix Sturm–Liouville operator on a finite interval with Dirichlet boundary conditions is studied. Properties of its spectral characteristics and the inverse problem of recovering the operator from these characteristics are investigated. Necessary and sufficient conditions on the spectral data of the operator are obtained. Research is conducted in the general case, with no a priori restrictions on the spectrum. A constructive algorithm for solving the inverse problem is provided.
Keywords: matrix Sturm–Liouville operator, spectral data, inverse spectral problem, necessary and sufficient condition.
@article{FAA_2012_46_1_a5,
     author = {N. P. Bondarenko},
     title = {Necessary and {Sufficient} {Conditions} for the {Solvability} of the {Inverse} {Problem} for the {Matrix} {Sturm--Liouville} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a5/}
}
TY  - JOUR
AU  - N. P. Bondarenko
TI  - Necessary and Sufficient Conditions for the Solvability of the Inverse Problem for the Matrix Sturm--Liouville Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2012
SP  - 65
EP  - 70
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a5/
LA  - ru
ID  - FAA_2012_46_1_a5
ER  - 
%0 Journal Article
%A N. P. Bondarenko
%T Necessary and Sufficient Conditions for the Solvability of the Inverse Problem for the Matrix Sturm--Liouville Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2012
%P 65-70
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a5/
%G ru
%F FAA_2012_46_1_a5
N. P. Bondarenko. Necessary and Sufficient Conditions for the Solvability of the Inverse Problem for the Matrix Sturm--Liouville Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 46 (2012) no. 1, pp. 65-70. http://geodesic.mathdoc.fr/item/FAA_2012_46_1_a5/

[1] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[2] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova Dumka, Kiev, 1977 | MR

[3] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[4] Z. S. Agranovich, V. A. Marchenko, Obratnaya zadacha teorii rasseyaniya, Izd-vo KhGU, Kharkov, 1960

[5] R. Carlson, J. Math. Anal. Appl., 267:2 (2002), 564–575 | DOI | MR | Zbl

[6] M. M. Malamud, Sturm–Liouville Theory. Past and present, Birkhauser, Basel, 2005, 237–270 | DOI | MR | Zbl

[7] V. A. Yurko, Inverse Problems, 22:4 (2006), 1139–1149 | DOI | MR | Zbl

[8] D. Chelkak, E. Korotyaev, J. Funct. Anal., 257:5 (2009), 1546–1588 | DOI | MR | Zbl

[9] Ya. V. Mykytyuk, N. S. Trush, Inverse Problems, 26:1 (2010), 015009 | DOI | MR | Zbl

[10] N. P. Bondarenko, Izv. Sarat. un-ta. Nov. seriya. Ser. matem. mekh. inform., 10:4 (2010), 3–13

[11] N. Bondarenko, Spectral analysis for the matrix Sturm–Liouville operator on a finite interval, arXiv: 1008.4339v1 | MR