Abelianization of the BGG resolution of representations of the Virasoro algebra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 72-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a resolution that permits computing the $t$-character of representations of the Virasoro algebra from the $(2,2p+1)$-models, i.e., the characters of the associated graded spaces with respect to the Poincaré–Birkhoff–Witt filtration.
Keywords: Virasoro algebra, $t$-characters of irreducible representations, abelianization.
@article{FAA_2011_45_4_a6,
     author = {B. L. Feigin},
     title = {Abelianization of the {BGG} resolution of representations of the {Virasoro} algebra},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--81},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a6/}
}
TY  - JOUR
AU  - B. L. Feigin
TI  - Abelianization of the BGG resolution of representations of the Virasoro algebra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 72
EP  - 81
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a6/
LA  - ru
ID  - FAA_2011_45_4_a6
ER  - 
%0 Journal Article
%A B. L. Feigin
%T Abelianization of the BGG resolution of representations of the Virasoro algebra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 72-81
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a6/
%G ru
%F FAA_2011_45_4_a6
B. L. Feigin. Abelianization of the BGG resolution of representations of the Virasoro algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 72-81. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a6/

[1] Dzh. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR

[2] B. Feigin, A. Stoyanovski, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, RIMS-942, arXiv: hep-th/9308079

[3] B. L. Feigin, A. V. Stoyanovskii, “Funktsionalnye modeli predstavlenii algebr tokov i polubeskonechnye kletki Shuberta”, Funkts. analiz i ego pril., 28:1 (1994), 68–90 | MR | Zbl

[4] B. Feigin, E. Frenkel, “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities”, I. M. Gelfand Seminar, Adv. in Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, 139–148 | MR | Zbl

[5] G. Felder, “BRST approach to minimal models”, Nuclear Phys. B, 317:1 (1989), 215–236 | DOI | MR

[6] E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for irreducible modules in type $A_n$”, Transformation Groups, 16:1 (2011), 71–89 | DOI | MR | Zbl

[7] A. Rocha-Caridi, “Vacuum vector representations of the Virasoro algebra”, Vertex Operators in Mathematical Physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., 3, Springer-Verlag, New York, 1985, 451–473 | MR