Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a new class of solutions to the WDVV associativity equations. This class is determined by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classifying such solutions of the WDVV equations to the particular case of the so-called algebraic Riccati equation and, in this way, arrive at a complete classification of irreducible solutions.
Keywords: Frobenius manifold, WDVV associativity equations, linearly degenerate PDEs
Mots-clés : algebraic Riccati equation.
@article{FAA_2011_45_4_a4,
     author = {B. A. Dubrovin and S. A. Zykov and M. V. Pavlov},
     title = {Linearly degenerate {Hamiltonian} {PDEs} and a new class of solutions to the {WDVV} associativity equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/}
}
TY  - JOUR
AU  - B. A. Dubrovin
AU  - S. A. Zykov
AU  - M. V. Pavlov
TI  - Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 49
EP  - 64
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/
LA  - ru
ID  - FAA_2011_45_4_a4
ER  - 
%0 Journal Article
%A B. A. Dubrovin
%A S. A. Zykov
%A M. V. Pavlov
%T Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 49-64
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/
%G ru
%F FAA_2011_45_4_a4
B. A. Dubrovin; S. A. Zykov; M. V. Pavlov. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/

[1] G. Darboux, Leçons sur systèmes orthogonaux et les coordonnées curvilignes, Paris, 1910

[2] B. A. Dubrovin, “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | MR | Zbl

[3] B. A. Dubrovin, “K differentsialnoi geometrii silno integriruemykh sistem gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 24:4 (1990), 25–30 | MR | Zbl

[4] B. Dubrovin, “Integrable systems in topological field theory”, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR

[5] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini, Terme, 1993), Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | DOI | MR | Zbl

[6] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270 (1983), 781–785 | MR | Zbl

[7] D. F. Egorov, “Ob odnom klasse ortogonalnykh sistem”, Uchenye zapiski Moskovskogo universiteta, Sekts. fiz.-mat., 18 (1901), 1–239

[8] G. A. El, A. M. Kamchatnov, M. V. Pavlov, S. A. Zykov, “Kinetic equation for a soliton gas and its hydrodynamic reductions”, J. Nonlinear Sci., 21:2 (2011), 151–191 | DOI | MR

[9] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford University Press, Oxford, 1995 | MR | Zbl

[10] J. W. van de Leur, R. Martini, “The construction of Frobenius manifolds from KP tau-functions”, Comm. Math. Phys., 205:3 (1999), 587–616 | DOI | MR | Zbl

[11] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR, ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl