Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2011_45_4_a4, author = {B. A. Dubrovin and S. A. Zykov and M. V. Pavlov}, title = {Linearly degenerate {Hamiltonian} {PDEs} and a new class of solutions to the {WDVV} associativity equations}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {49--64}, publisher = {mathdoc}, volume = {45}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/} }
TY - JOUR AU - B. A. Dubrovin AU - S. A. Zykov AU - M. V. Pavlov TI - Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 49 EP - 64 VL - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/ LA - ru ID - FAA_2011_45_4_a4 ER -
%0 Journal Article %A B. A. Dubrovin %A S. A. Zykov %A M. V. Pavlov %T Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations %J Funkcionalʹnyj analiz i ego priloženiâ %D 2011 %P 49-64 %V 45 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/ %G ru %F FAA_2011_45_4_a4
B. A. Dubrovin; S. A. Zykov; M. V. Pavlov. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a4/
[1] G. Darboux, Leçons sur systèmes orthogonaux et les coordonnées curvilignes, Paris, 1910
[2] B. A. Dubrovin, “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | MR | Zbl
[3] B. A. Dubrovin, “K differentsialnoi geometrii silno integriruemykh sistem gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 24:4 (1990), 25–30 | MR | Zbl
[4] B. Dubrovin, “Integrable systems in topological field theory”, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR
[5] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini, Terme, 1993), Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | DOI | MR | Zbl
[6] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270 (1983), 781–785 | MR | Zbl
[7] D. F. Egorov, “Ob odnom klasse ortogonalnykh sistem”, Uchenye zapiski Moskovskogo universiteta, Sekts. fiz.-mat., 18 (1901), 1–239
[8] G. A. El, A. M. Kamchatnov, M. V. Pavlov, S. A. Zykov, “Kinetic equation for a soliton gas and its hydrodynamic reductions”, J. Nonlinear Sci., 21:2 (2011), 151–191 | DOI | MR
[9] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford University Press, Oxford, 1995 | MR | Zbl
[10] J. W. van de Leur, R. Martini, “The construction of Frobenius manifolds from KP tau-functions”, Comm. Math. Phys., 205:3 (1999), 587–616 | DOI | MR | Zbl
[11] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR, ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl