Alexander polynomials and Poincar\'e series of sets of ideals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 40-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Earlier the authors considered and, in some cases, computed Poincaré series for two sorts of multi-index filtrations on the ring of germs of functions on a complex (normal) surface singularity (in particular, on the complex plane). A filtration of the first class was defined by a curve (with several branches) on the surface singularity. A filtration of the second class (called divisorial) was defined by a set of components of the exceptional divisor of a modification of the surface singularity. Here we define and compute in some cases the Poincaré series corresponding to a set of ideals in the ring of germs of functions on a surface singularity. For the complex plane, this notion unites the two classes of filtrations described above.
Keywords:
ideal, Poincaré series, zeta function.
Mots-clés : surface
Mots-clés : surface
@article{FAA_2011_45_4_a3,
author = {S. M. Gusein-Zade and F. Delgado and A. Campillo},
title = {Alexander polynomials and {Poincar\'e} series of sets of ideals},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {40--48},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/}
}
TY - JOUR AU - S. M. Gusein-Zade AU - F. Delgado AU - A. Campillo TI - Alexander polynomials and Poincar\'e series of sets of ideals JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 40 EP - 48 VL - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/ LA - ru ID - FAA_2011_45_4_a3 ER -
S. M. Gusein-Zade; F. Delgado; A. Campillo. Alexander polynomials and Poincar\'e series of sets of ideals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 40-48. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/