Alexander polynomials and Poincar\'e series of sets of ideals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 40-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier the authors considered and, in some cases, computed Poincaré series for two sorts of multi-index filtrations on the ring of germs of functions on a complex (normal) surface singularity (in particular, on the complex plane). A filtration of the first class was defined by a curve (with several branches) on the surface singularity. A filtration of the second class (called divisorial) was defined by a set of components of the exceptional divisor of a modification of the surface singularity. Here we define and compute in some cases the Poincaré series corresponding to a set of ideals in the ring of germs of functions on a surface singularity. For the complex plane, this notion unites the two classes of filtrations described above.
Keywords: ideal, Poincaré series, zeta function.
Mots-clés : surface
@article{FAA_2011_45_4_a3,
     author = {S. M. Gusein-Zade and F. Delgado and A. Campillo},
     title = {Alexander polynomials and {Poincar\'e} series of sets of ideals},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--48},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - F. Delgado
AU  - A. Campillo
TI  - Alexander polynomials and Poincar\'e series of sets of ideals
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 40
EP  - 48
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/
LA  - ru
ID  - FAA_2011_45_4_a3
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A F. Delgado
%A A. Campillo
%T Alexander polynomials and Poincar\'e series of sets of ideals
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 40-48
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/
%G ru
%F FAA_2011_45_4_a3
S. M. Gusein-Zade; F. Delgado; A. Campillo. Alexander polynomials and Poincar\'e series of sets of ideals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 40-48. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a3/

[1] N. A'Campo, “La fonction zêta d'une monodromie”, Comm. Math. Helv., 50 (1975), 233–248 | DOI | MR

[2] A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity via the ring of functions on it”, Duke Math. J., 117:1 (2003), 125–156 | DOI | MR | Zbl

[3] A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity and integrals with respect to the Euler characteristic”, Internat. J. Math., 14:1 (2003), 47–54 | DOI | MR | Zbl

[4] A. Campillo, F. Delgado, S. M. Gusein-Zade, “Poincaré series of a rational surface singularity”, Invent. Math., 155:1 (2004), 41–53 | DOI | MR | Zbl

[5] A. Campillo, F. Delgado, S. M. Gusein-Zade, “Poincaré series of curves on rational surface singularities”, Comm. Math. Helv., 80:1 (2005), 95–102 | MR | Zbl

[6] A. Campillo, F. Delgado, S. M. Gusein-Zade, “On Poincaré series of filtrations on equivariant functions of two variables”, Mosc. Math. J., 7:2 (2007), 243–255 | DOI | MR | Zbl

[7] S. M. Gusein-Zade, F. Delgado, A. Kampilo, “Universalnye abelevy nakrytiya ratsionalnykh osobennostei poverkhnostei i multiindeksnye filtratsii”, Funkts. analiz i ego pril., 42:2 (2008), 3–10 | DOI | MR | Zbl

[8] F. Delgado, S. M. Gusein-Zade, “Poincaré series for several plane divisorial valuations”, Proc. Edinb. Math. Soc. (2), 46:2 (2003), 501–509 | DOI | MR | Zbl

[9] D. Eisenbud, W. Neumann, Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Studies, 110, Princeton Univ. Press, Princeton, NJ, 1985 | MR | Zbl

[10] J. Lipman, “Rational singularities with applications to algebraic surfaces and unique factorization”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 195–279 | DOI | MR | Zbl

[11] A. Némethi, “Poincaré series associated with surface singularities”, Singularities I, Contemp. Math., 474, Amer. Math. Soc., Providence, RI, 2008, 271–297 | DOI | MR | Zbl

[12] W. D. Neumann, J. Wahl, “Universal abelian covers of surface singularities”, Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, 181–190 | MR | Zbl

[13] T. Okuma, “Universal abelian covers of rational surface singularities”, J. London Math. Soc. (2), 70:2 (2004), 307–324 | DOI | MR | Zbl

[14] L. van Proeyen, W. Veys, “The monodromy conjecture for zeta functions associated to ideals in dimension two”, Ann. Inst. Fourier (Grenoble), 60:4 (2010), 1347–1362 | DOI | MR | Zbl

[15] C. Sabbah, “Modules d'Alexander et $D$-modules”, Duke Math. J., 60:3 (1990), 729–814 | DOI | MR | Zbl

[16] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, v. 2, IL, M., 1963