On the space of symmetric operators with multiple ground states
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the homology structure of the filtration of the space of self-adjoint operators by the multiplicity of the ground state. We consider only operators acting on a finite-dimensional complex or real Hilbert space, but infinite-dimensional generalizations are easy to guess.
Keywords: self-adjoint operator, multiple eigenvalue, exact sequence.
@article{FAA_2011_45_4_a0,
     author = {A. A. Agrachev},
     title = {On the space of symmetric operators with multiple ground states},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a0/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - On the space of symmetric operators with multiple ground states
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 1
EP  - 15
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a0/
LA  - ru
ID  - FAA_2011_45_4_a0
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T On the space of symmetric operators with multiple ground states
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 1-15
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a0/
%G ru
%F FAA_2011_45_4_a0
A. A. Agrachev. On the space of symmetric operators with multiple ground states. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a0/

[1] V. I. Arnold, “Mody i kvazimody”, Funkts. analiz i ego pril., 6:2 (1972), 12–20 | MR | Zbl

[2] V. I. Arnold, “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Selecta Math., 1:1 (1995), 1–19 | DOI | MR | Zbl

[3] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1, 2, Mir, M., 1982 | MR

[4] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979 | MR

[5] M. Shapiro, A. Vainshtein, “Stratification of Hermitian matrices and the Alexander mapping”, C. R. Acad. Sci., Sér. I, 321:12 (1995), 1599–1604 | MR | Zbl