On the space of symmetric operators with multiple ground states
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 1-15
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the homology structure of the filtration of the space of self-adjoint operators by the multiplicity of the ground state. We consider only operators acting on a finite-dimensional complex or real Hilbert space, but infinite-dimensional generalizations are easy to guess.
Keywords:
self-adjoint operator, multiple eigenvalue, exact sequence.
@article{FAA_2011_45_4_a0,
author = {A. A. Agrachev},
title = {On the space of symmetric operators with multiple ground states},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--15},
year = {2011},
volume = {45},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a0/}
}
A. A. Agrachev. On the space of symmetric operators with multiple ground states. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 4, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2011_45_4_a0/
[1] V. I. Arnold, “Mody i kvazimody”, Funkts. analiz i ego pril., 6:2 (1972), 12–20 | MR | Zbl
[2] V. I. Arnold, “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Selecta Math., 1:1 (1995), 1–19 | DOI | MR | Zbl
[3] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, v. 1, 2, Mir, M., 1982 | MR
[4] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1979 | MR
[5] M. Shapiro, A. Vainshtein, “Stratification of Hermitian matrices and the Alexander mapping”, C. R. Acad. Sci., Sér. I, 321:12 (1995), 1599–1604 | MR | Zbl