Algebraic functions, configuration spaces, Teichm\"uller spaces, and new holomorphically combinatorial invariants
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 55-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for $n\ge 4$, the function $u=u_n(z)$, $z=(z_1,\dots,z_n)\in{\mathbb{C}}^n$, defined by the equation $u^n +z_1 u^{n-1} +\dots + z_n=0$ cannot be a branch of an entire algebraic function $g$ on ${\mathbb{C}}^n$ that is a composition of entire algebraic functions depending on fewer than $n-1$ variables and has the same discriminant set as $u_n$. A key role is played by a description of holomorphic maps between configuration spaces of ${\mathbb{C}}$ and ${\mathbb{CP}}^1$, which, in turn, involves Teichmüller spaces and new holomorphically combinatorial invariants of complex spaces.
Mots-clés : configuration spaces
Keywords: braid groups, compositions of algebraic functions, invariants of complex spaces.
@article{FAA_2011_45_3_a5,
     author = {V. Ya. Lin},
     title = {Algebraic functions, configuration spaces, {Teichm\"uller} spaces, and new holomorphically combinatorial invariants},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--78},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a5/}
}
TY  - JOUR
AU  - V. Ya. Lin
TI  - Algebraic functions, configuration spaces, Teichm\"uller spaces, and new holomorphically combinatorial invariants
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 55
EP  - 78
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a5/
LA  - ru
ID  - FAA_2011_45_3_a5
ER  - 
%0 Journal Article
%A V. Ya. Lin
%T Algebraic functions, configuration spaces, Teichm\"uller spaces, and new holomorphically combinatorial invariants
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 55-78
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a5/
%G ru
%F FAA_2011_45_3_a5
V. Ya. Lin. Algebraic functions, configuration spaces, Teichm\"uller spaces, and new holomorphically combinatorial invariants. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 55-78. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a5/

[1] V. I. Arnold, “Kosy algebraicheskikh funktsii i kogomologii lastochkinykh khvostov”, UMN, 23:4 (1968), 247–248 | MR

[2] V. I. Arnold, “O nekotorykh topologicheskikh invariantakh algebraicheskikh funktsii”, Trudy MMO, 21, MGU, M., 1970, 27–46 | MR

[3] V. I. Arnold, “O klassakh kogomologii algebraicheskikh funktsii, invariantnykh otnositelno preobrazovanii Chirngauzena”, Funkts. analiz i ego pril., 4:1 (1970), 84–85 | MR

[4] V. I. Arnold, “Topologicheskie invarianty algebraicheskikh funktsii. II”, Funkts. analiz i ego pril., 4:2 (1970), 1–9

[5] V. I. Arnold, G. Shimura, “Superposition of algebraic functions”, Mathematical Developments Arising from Hilbert's Problems, Proc. Symposia in Pure and Applied Mathematics, 28, Amer. Math. Soc., Providence, RI, 1976, 45–46

[6] V. I. Arnold, “I. G. Petrovskii, topologicheskie problemy Gilberta i sovremennaya matematika”, UMN, 57:4(346) (2002), 197–207 | DOI | MR

[7] V. I. Arnold, “Ot problemy Gilberta o superpozitsiyakh do dinamicheskikh sistem”, Matematicheskie sobytiya XX veka, Fazis, Moskva, 2003, 19–51

[8] E. Artin, “Theorie der Zöpfe”, Abh. Math. Sem. Univ. Hamburg, 4:1 (1925), 47–72 | DOI | MR | Zbl

[9] E. Artin, “Theory of braids”, Ann. of Math., 48:1 (1947), 101–126 | DOI | MR | Zbl

[10] E. Artin, “Braids and permutations”, Ann. of Math., 48:3 (1947), 643–649 | DOI | MR | Zbl

[11] L. Bers, H. L. Royden, “Holomorphic families of injections”, Acta Math., 157:3-4 (1986), 259–286 | DOI | MR | Zbl

[12] J. Buhler, Z. Reichstein, “On the essential dimension of a finite group”, Compositio Math., 106:2 (1997), 159–179 | DOI | MR | Zbl

[13] A. Cayley, “Note sur deux formules données par M. M. Eisenstein et Hesse”, J. Reine Angew. Math., 29 (1845), 54–57 | DOI | MR | Zbl

[14] G. N. Chebotarëv, “K probleme rezolvent”, Uchen. zap. Kazanskogo un-ta, 114:2 (1954), 189–193 | MR

[15] J. Dixmier, “Histoire du $13^e$ problème de Hilbert”, Analyse diophantienne et géométrie algébrique, Cahiers Sém. Hist. Math., Sér. 2, v. 3, Univ. Paris VI, Paris, 1993, 85–94 | MR | Zbl

[16] C. J. Earle, I. Kra, “On holomorphic mappings between Teichmüller spaces”, Contributions to Analysis. A collection of papers dedicated to L. Bers, Acad. Press, New York, 1974, 107–124 | MR

[17] C. J. Earle, I. Kra, “On sections of some holomorphic families of closed Riemann surfaces”, Acta Math., 137:1-2 (1976), 49–79 | DOI | MR | Zbl

[18] G. Eisenstein, “Über eine merkwürdige identische Gleichung”, J. Reine Angew. Math., 27 (1844), 105–106 ; Mathematische Werke, Band I, Chelsea, New York, 1975, 1989 | DOI | MR | Zbl | MR | Zbl

[19] E. Fadell, L. Neuwirth, “Configuration spaces”, Math. Scand., 10 (1962), 111–118 | DOI | MR | Zbl

[20] Y. Feler, “Configuration spaces of tori”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 18:2 (2007), 139–151 | DOI | MR | Zbl

[21] Y. Feler, “Spaces of geometrically generic configurations”, J. Eur. Math. Soc., 10:3 (2008), 601–624 | DOI | MR | Zbl

[22] L. R. Ford, Automorphic Functions, Chelsea, 1951 | MR

[23] E. A. Gorin, V. Ya. Lin, “Gruppa kos i algebraicheskie uravneniya s nepreryvnymi koeffitsientami”, UMN, 24:2 (1969), 225–226 | MR | Zbl

[24] E. A. Gorin, V. Ya. Lin, “Algebraicheskie uravneniya s nepreryvnymi koeffitsientami i nekotorye voprosy algebraicheskoi teorii kos”, Mat. sb., 78:4 (1969), 579–610 | MR | Zbl

[25] J. H. Hubbard, “Sur la non-existence de sections analytiques à la courbe universelle de Teichmüller”, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972), A978–A979 | MR

[26] J. H. Hubbard, Sur les sections analytiques de la courbe universelle de Teichmüller, Mem. Amer. Math. Soc., 4, no. 166, 1976 | MR

[27] J. H. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, v. 1, Teichmüller theory, Matrix Edition, Ithaca, NY, 2006 | MR

[28] Sh. I. Kaliman, “Golomorfnaya universalnaya nakryvayuschaya prostranstva polinomov bez kratnykh kornei”, Funkts. analiz i ego pril., 9:1 (1975), 71 | MR | Zbl

[29] Sh. I. Kaliman, “Golomorfnye endomorfizmy mnogoobraziya kompleksnykh polinomov s diskriminantom 1”, UMN, 31:1 (1976), 251–252 | MR | Zbl

[30] Sh. I. Kaliman, “Golomorfnaya universalnaya nakryvayuschaya prostranstva polinomov bez kratnykh kornei”, Teoriya funktsii, funkts. analiz i ikh pril., 25, KhGU, Kharkov, 1977, 25–35 | MR

[31] Sh. I. Kaliman, “Golomorfnye endomorfizmy kompleksnykh kamer Veilya serii $D_n$”, UMN, 34:2 (1979), 201–202 | MR | Zbl

[32] Sh. I. Kaliman, “The holomorphic universal covers of polynomials without multiple roots”, Selecta Math. Soviet., 12:4 (1993), 395–405 | MR | Zbl

[33] A. G. Khovanskii, “O predstavimosti algebroidnykh funktsii superpozitsiyami analiticheskikh funktsii i algebroidnykh funktsii odnoi peremennoi”, Funkts. analiz i ego pril., 4:2 (1970), 74–79 | MR

[34] A. G. Khovanskii, “O razreshimosti i nerazreshimosti uravnenii v yavnom vide”, UMN, 59:4 (2004), 69–146 | DOI | MR

[35] A. G. Khovanskii, Topologicheskaya teoriya Galua. Razreshimost i nerazreshimost uravnenii v konechnom vide, MTsNMO, Moskva, 2008

[36] F. Klein, Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Nauka, Moskva, 1989 | MR

[37] V. Ya. Lin, “Algebroidnye funktsii i golomorfnye elementy gomotopicheskikh grupp kompleksnogo mnogoobraziya”, DAN SSSR, 201:1 (1971), 28–31 | Zbl

[38] V. Ya. Lin, “O predstavleniyakh gruppy kos perestanovkami”, UMN, 27:3 (1972), 192 | MR | Zbl

[39] V. Ya. Lin, “Algebraicheskie funktsii s universalnym diskriminantnym mnogoobraziem”, Funkts. analiz i ego pril., 6:1 (1972), 81–82 | MR | Zbl

[40] V. Ya. Lin, “O superpozitsiyakh algebraicheskikh funktsii”, Funkts. analiz i ego pril., 6:3 (1972), 77–78 | MR

[41] V. Ya. Lin, “Predstavleniya kos perestanovkami”, UMN, 29:1 (1974), 173–174 | MR | Zbl

[42] V. Ya. Lin, “Superpozitsiii algebraicheskikh funktsii”, Funkts. analiz i ego pril., 10:1 (1976), 37–45 | MR | Zbl

[43] V. Ya. Lin, “Kosy Artina i svyazannye s nimi gruppy i prostranstva”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 17, VINITI, M., 1979, 159–227 | MR

[44] V. Ya. Lin, “Liuvillevskie nakrytiya kompleksnykh prostranstv i amenabelnye gruppy”, Matem. sb., 132(174):2 (1987), 202–224 | MR | Zbl

[45] V. Ya. Lin, “Around the $13$th Hilbert problem for algebraic functions”, Proc. of the Hirzebruch 65 Conf. on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conference Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 307–327 | MR | Zbl

[46] V. Ya. Lin, Braids, Permutations, Polynomials–I, Max-Planck-Institut für Math., Preprint MPI 96-118, 1996

[47] V. Ya. Lin, M. G. Zaidenberg, “Liouville and Carathéodory coverings in Riemannian and complex geometry”, Voronezh Winter Mathematical School, Amer. Math. Soc. Transl. (2), 184, Amer. Math. Soc., Providence, RI, 1998, 111–130 | MR | Zbl

[48] V. Ya. Lin, Configuration Spaces of $\mathbb C$ and ${\mathbb{CP}}^1$: Some Analytic Properties, Max-Planck-Institut für Math., Preprint MPI 96-118, 2003

[49] V. Ya. Lin, Braids and Permutations, arXiv: math/0404528v1

[50] V. Ya. Lin, Configuration Spaces of $\mathbb C$ and ${\mathbb{CP}}^1$: Some Analytic Properties, arXiv: math/0403120v3

[51] A. A. Markov, Osnovy algebraicheskoi teorii kos, Trudy MIAN, 16, Izd-vo AN SSSR, M.-L., 1945

[52] V. V. Morozov, “O nekotorykh voprosakh problemy rezolvent”, Uchen. zap. Kazansk. gos. un-ta, 114:2 (1954), 173–187 | MR

[53] B. Segre, “The algebraic equations of degrees $5,9,157,\dots$, and the arithmetics upon an algebraic variety”, Ann. of Math., 46 (1945), 287–301 | DOI | MR | Zbl

[54] B. Segre, Arithmetical questions on algebraic varieties, Athlom Press, London, 1951 | MR | Zbl

[55] N. G. Tschebotaröw, “Über ein algebraisches Problem von Herren Hilbert”, Math. Ann., 104:1 (1931), 459–471 | DOI | MR

[56] N. G. Tschebotaröw, “Über ein algebraisches Problem von Herren Hilbert-II”, Math. Ann., 105:1 (1931), 240–255 | DOI | MR

[57] N. G. Tschebotaröw, “Über das Klein-Hilbertsche Resolventenproblem”, Izv. Kazansk. fiz.-mat. obsch., 6 (1932-1933), 5–22 | MR

[58] N. G. Chebotarëv, “Problema rezolvent i kriticheskie mnogoobraziya”, Izv. AN SSSR, ser. matem., 7 (1943), 123–146 ; Собр. соч., т. 1, 305–326 | Zbl

[59] V. A. Vasilev, “Kogomologii gruppy kos i slozhnost algoritmov”, Funkts. analiz i ego pril., 22:3 (1988), 15–24 | MR

[60] V. A. Vasilev, Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[61] A. G. Vitushkin, On representation of functions by means of superpositions and related topics, Monographie No. 25 de l'Enseignement Mathématique. Série des Conférences de l'Union Mathe'matique Internationale, No. 6, Enseignement Mathématique, Université de Genéve, Genéve, 1978 | MR | Zbl

[62] A. G. Vitushkin, “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1 (2004), 11–24 | DOI | MR

[63] A. Wiman, “Über die Anwendung der Tschirnhausentransformation auf die Reduktion algebraischer Gleichungen”, Nova Acta R. Soc. Sci. Uppsalientis, 1927, vol. extra ordin. editum, 3–8

[64] V. M. Zinde, “Analiticheskie svoistva prostranstv regulyarnykh orbit grupp Koksetera serii $B$ i $D$”, Funkts. analiz i ego pril., 11:1 (1977), 69–70 | MR | Zbl

[65] V. M. Zinde, “Golomorfnye otobrazheniya prostranstv regulyarnykh orbit grupp Koksetera serii $B$ i $D$”, Sib. mat. zhurnal, 18:5 (1978), 1015–1026 | MR