Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study dynamical systems on the torus modeling Josephson junctions in the theory of superconductivity, and also perturbations of these systems. We show that, in the family of equations that describe resistively shunted Josephson junctions, phase lock occurs only for integer rotation numbers and propose a simple method for calculating the boundaries of the corresponding Arnold tongues. This part is a simplification of known results about the quantization of rotation number [4]. Moreover, we show that the quantization of rotation number only at integer points is a phenomenon of infinite codimension. Namely, there is an infinite set of independent perturbations of systems that give rise to countably many nondiscretely located phase-locking regions.
Keywords: differential equations on the torus, perturbation theory, Josephson effect, phase lock, quantization of rotation number, Arnold tongues.
@article{FAA_2011_45_3_a4,
     author = {Yu. S. Ilyashenko and D. A. Ryzhov and D. A. Filimonov},
     title = {Phase-lock effect for equations modeling resistively shunted {Josephson} junctions and for their perturbations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a4/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
AU  - D. A. Ryzhov
AU  - D. A. Filimonov
TI  - Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 41
EP  - 54
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a4/
LA  - ru
ID  - FAA_2011_45_3_a4
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%A D. A. Ryzhov
%A D. A. Filimonov
%T Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 41-54
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a4/
%G ru
%F FAA_2011_45_3_a4
Yu. S. Ilyashenko; D. A. Ryzhov; D. A. Filimonov. Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 3, pp. 41-54. http://geodesic.mathdoc.fr/item/FAA_2011_45_3_a4/

[1] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “O svoistvakh differentsialnogo uravneniya, opisyvayuschego dinamiku silnoshuntirovannogo perekhoda Dzhozefsona”, UMN, 59:2 (2004), 187–188 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “Matematicheskie modeli dinamiki silnoshuntirovannogo perekhoda Dzhozefsona”, UMN, 63:3 (2008), 155–156 | DOI | MR | Zbl

[4] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “Effekt kvantovaniya chisla vrascheniya”, TMF, 162:2 (2010), 254–265 | DOI | MR

[5] O. G. Galkin, “Fazovyi zakhvat dlya otobrazhenii tora tipa Mate”, Funkts. analiz i ego pril., 27:1 (1993), 1–11 | MR | Zbl

[6] Yu. S. Ilyashenko, Lektsii po dinamicheskim sistemam, Letnyaya shkola-2009, ne opublikovano

[7] K. K. Likharev, B. T. Ulrikh, Sistemy s dzhozefsonovskimi kontaktami, Izd-vo MGU, M., 1978

[8] S. I. Tertychnyi, “Ob asimptoticheskikh svoistvakh reshenii uravneniya $\dot\phi+\sin\phi=\nobreak f$ pri periodicheskom $f$”, UMN, 55:1 (2000), 195–196 | DOI | MR | Zbl

[9] V. V. Shmidt, Vvedenie v fiziku sverkhprovodnikov, MTsNMO, M., 2000

[10] R. L. Foote, “Geometry of the Prytz planimeter”, Rep. Math. Phys., 42:1-2 (1998), 249–271 | DOI | MR | Zbl

[11] O. V. Karpov, V. M. Buchstaber, S. I. Tertychniy, J. Niemeyer, O. Kieler, “Modeling of rf-biased overdamped Josephson junctions”, J. Appl. Phys., 104:9 (2008), 093910 | DOI | MR

[12] M. Levi, S. Tabachnikov, “On bicycle tire tracks geometry, hatchet planimeter, Menzin's conjecture and oscillation of unicycle tracks”, Experiment. Math., 18:2 (2009), 173–186 | DOI | MR | Zbl

[13] S. A. Marvel, R. E. Mirollo, S. H. Strogatz, “Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action”, Chaos, 19:4 (2009), 043104, 11 pp. | DOI | MR