Lipschitz Functions, Schatten Ideals, and Unbounded Derivations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for any Lipschitz function $f(t_1,\dots,t_n)$ of $n$ variables, the corresponding map $f_{op}\colon(A_1,\dots,A_n)\mapsto f(A_1,\dots,A_n)$ on the set of all commutative $n$-tuples of Hermitian operators on a Hilbert space is Lipschitz with respect to the norm of each Schatten ideal $\mathcal{S}^p$, $p\in(1,\infty)$. This result is applied to the functional calculus of normal operators and contractions. It is shown that Lipschitz functions of one variable preserve domains of closed derivations with values in $\mathcal{S}^p$. It is also proved that the map $f_{op}$ is Fréchet differentiable in the norm of $\mathcal{S}^p$ if $f$ is continuously differentiable.
Keywords: functions of operators, operator Lipschitz functions, Schatten classes, unbounded derivations.
@article{FAA_2011_45_2_a7,
     author = {\`E. V. Kissin and D. S. Potapov and F. A. Sukochev and V. S. Shulman},
     title = {Lipschitz {Functions,} {Schatten} {Ideals,} and {Unbounded} {Derivations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a7/}
}
TY  - JOUR
AU  - È. V. Kissin
AU  - D. S. Potapov
AU  - F. A. Sukochev
AU  - V. S. Shulman
TI  - Lipschitz Functions, Schatten Ideals, and Unbounded Derivations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 93
EP  - 96
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a7/
LA  - ru
ID  - FAA_2011_45_2_a7
ER  - 
%0 Journal Article
%A È. V. Kissin
%A D. S. Potapov
%A F. A. Sukochev
%A V. S. Shulman
%T Lipschitz Functions, Schatten Ideals, and Unbounded Derivations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 93-96
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a7/
%G ru
%F FAA_2011_45_2_a7
È. V. Kissin; D. S. Potapov; F. A. Sukochev; V. S. Shulman. Lipschitz Functions, Schatten Ideals, and Unbounded Derivations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 93-96. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a7/

[1] J. Arazy, Integral Equations Operator Theory, 1:4 (1978), 453–495 | DOI | MR | Zbl

[2] J. Arazy, T. J. Barton, Y. Friedman, Integral Equations Operator Theory, 13:4 (1990), 461–487 | DOI | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, Integral Equations Operator Theory, 47:2 (2003), 131–168 | DOI | MR | Zbl

[4] Yu. L. Daletskii, S. G. Krein, Trudy seminara po funkts. analizu Voronezhskogo gos. un-ta, 1956:1 (1956), 81–105 | MR

[5] E. V. Kissin, V. S. Shulman, Funkts. analiz i ego pril., 30:4 (1996), 75–77 | DOI | MR | Zbl

[6] E. Kissin, V. S. Shulman, Integral Equations Operator Theory, 49:2 (2004), 165–210 | DOI | MR | Zbl

[7] G. K. Pedersen, Publ. Res. Inst. Math. Sci., 36:1 (2000), 139–157 | DOI | MR | Zbl

[8] V. V. Peller, arXiv: 0904.1761

[9] D. Potapov, F. Sukochev, “Operator-Lipschitz functions in Schatten–von Neumann classes”, Acta Math., v pechati | MR