Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 1-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider mixed problems for strongly elliptic second-order systems in a bounded domain with Lipschitz boundary in the space $\mathbb{R}^n$. For such problems, equivalent equations on the boundary in the simplest $L_2$-spaces $H^s$ of Sobolev type are derived, which permits one to represent the solutions via surface potentials. We prove a result on the regularity of solutions in the slightly more general spaces $H^s_p$ of Bessel potentials and Besov spaces $B^s_p$. Problems with spectral parameter in the system or in the condition on a part of the boundary are considered, and the spectral properties of the corresponding operators, including the eigenvalue asymptotics, are discussed.
Keywords:
strongly elliptic system, mixed problem, potential type operator, spectral problem, eigenvalue asymptotics.
@article{FAA_2011_45_2_a0,
author = {M. S. Agranovich},
title = {Mixed {Problems} in a {Lipschitz} {Domain} for {Strongly} {Elliptic} {Second-Order} {Systems}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--22},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a0/}
}
TY - JOUR AU - M. S. Agranovich TI - Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2011 SP - 1 EP - 22 VL - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a0/ LA - ru ID - FAA_2011_45_2_a0 ER -
M. S. Agranovich. Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 2, pp. 1-22. http://geodesic.mathdoc.fr/item/FAA_2011_45_2_a0/