On the Spectrum of the Robin Problem in a Domain with a Peak
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formally self-adjoint Robin–Laplace problem in a peak-shaped domain is considered. The associated quadratic form is not semi-bounded, which is proved to lead to a pathological structure of the spectrum of the corresponding operator. Namely, the residual spectrum of the operator itself and the point spectrum of its adjoint cover the whole complex plane. The operator is not self-adjoint, and the (discrete) spectrum of any of its self-adjoint extensions is not semi-bounded.
Keywords: Robin condition, third boundary value problem, peak, spectrum, asymptotics, self-adjoint extension.
Mots-clés : cusp
@article{FAA_2011_45_1_a9,
     author = {S. A. Nazarov and Ya. Taskinen},
     title = {On the {Spectrum} of the {Robin} {Problem} in a {Domain} with a {Peak}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - Ya. Taskinen
TI  - On the Spectrum of the Robin Problem in a Domain with a Peak
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 93
EP  - 96
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a9/
LA  - ru
ID  - FAA_2011_45_1_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A Ya. Taskinen
%T On the Spectrum of the Robin Problem in a Domain with a Peak
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 93-96
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a9/
%G ru
%F FAA_2011_45_1_a9
S. A. Nazarov; Ya. Taskinen. On the Spectrum of the Robin Problem in a Domain with a Peak. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a9/

[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR

[2] V. G. Mazya, Prostranstva Soboleva, izd-vo Leningr. un-ta, L., 1985 | MR

[3] D. Daners, Trans. Amer. Math. Soc., 352:9 (2000), 4207–4236 | DOI | MR | Zbl

[4] S. A. Nazarov, Ya. Taskinen, Vestnik SPbGU, ser. 1, 2008, no. 1, 56–65 | Zbl