A Special Ergodic Theorem for Anosov Diffeomorphisms on the 2-Torus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A strengthened version of the Birkhoff ergodic theorem for linear Anosov diffeomorphisms on the 2-torus is presented. Namely, it is proved that the Hausdorff dimension of the set of points at which partial limits of the time average strongly (by a constant) differ from the space average is strictly less than the dimension of the space (i.e., than 2).
Mots-clés : Hausdorff dimension, Markov chain
Keywords: special ergodic theorem, Anosov diffeomorphism, large deviation theorem.
@article{FAA_2011_45_1_a5,
     author = {P. S. Saltykov},
     title = {A {Special} {Ergodic} {Theorem} for {Anosov} {Diffeomorphisms} on the {2-Torus}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a5/}
}
TY  - JOUR
AU  - P. S. Saltykov
TI  - A Special Ergodic Theorem for Anosov Diffeomorphisms on the 2-Torus
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 69
EP  - 78
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a5/
LA  - ru
ID  - FAA_2011_45_1_a5
ER  - 
%0 Journal Article
%A P. S. Saltykov
%T A Special Ergodic Theorem for Anosov Diffeomorphisms on the 2-Torus
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 69-78
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a5/
%G ru
%F FAA_2011_45_1_a5
P. S. Saltykov. A Special Ergodic Theorem for Anosov Diffeomorphisms on the 2-Torus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a5/

[1] R. L. Adler, B. Weiss, “Entropy, a complete metric invariant for automorphisms of the torus”, Proc. Nat. Acad. Sci. USA, 57 (1967), 1573–1576 | DOI | MR | Zbl

[2] R. L. Adler, B. Weiss, “Similarity of automorphisms of the torus”, Mem. Amer. Math. Soc., 98, 1970 | MR | Zbl

[3] Yu. Ilyashenko, V. Klepstyn, P. Saltykov, “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl

[4] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[5] Ya. G. Sinai, “Postroenie markovskikh razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 70–80 | MR | Zbl

[6] N. Sidorov, A. Vershik, “Bijective arithmetic codings of hyperbolic automorphisms of the $2$-torus, and binary quadratic forms”, J. Dynam. Control Systems, 4:3 (1998), 365–399 | DOI | MR | Zbl

[7] S. R. S. Varadhan, “Large deviations”, Ann. Probab., 36:2 (2008), 397-419 | DOI | MR | Zbl