Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2011_45_1_a5, author = {P. S. Saltykov}, title = {A {Special} {Ergodic} {Theorem} for {Anosov} {Diffeomorphisms} on the {2-Torus}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {69--78}, publisher = {mathdoc}, volume = {45}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a5/} }
P. S. Saltykov. A Special Ergodic Theorem for Anosov Diffeomorphisms on the 2-Torus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a5/
[1] R. L. Adler, B. Weiss, “Entropy, a complete metric invariant for automorphisms of the torus”, Proc. Nat. Acad. Sci. USA, 57 (1967), 1573–1576 | DOI | MR | Zbl
[2] R. L. Adler, B. Weiss, “Similarity of automorphisms of the torus”, Mem. Amer. Math. Soc., 98, 1970 | MR | Zbl
[3] Yu. Ilyashenko, V. Klepstyn, P. Saltykov, “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl
[4] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[5] Ya. G. Sinai, “Postroenie markovskikh razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 70–80 | MR | Zbl
[6] N. Sidorov, A. Vershik, “Bijective arithmetic codings of hyperbolic automorphisms of the $2$-torus, and binary quadratic forms”, J. Dynam. Control Systems, 4:3 (1998), 365–399 | DOI | MR | Zbl
[7] S. R. S. Varadhan, “Large deviations”, Ann. Probab., 36:2 (2008), 397-419 | DOI | MR | Zbl