Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup
Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete list of indecomposable characters of the infinite symmetric semigroup is given. In comparison with a similar list for the infinite symmetric group, only one new parameter appears, which has a clear combinatorial meaning. The results rely on the representation theory of finite symmetric semigroups and the representation theory of the infinite symmetric group.
Keywords: symmetric semigroup, character, factor representation, infinite symmetric group.
@article{FAA_2011_45_1_a1,
     author = {A. M. Vershik and P. P. Nikitin},
     title = {Description of the {Characters} and {Factor} {Representations} of the {Infinite} {Symmetric} {Inverse} {Semigroup}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. P. Nikitin
TI  - Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2011
SP  - 16
EP  - 30
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a1/
LA  - ru
ID  - FAA_2011_45_1_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. P. Nikitin
%T Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2011
%P 16-30
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a1/
%G ru
%F FAA_2011_45_1_a1
A. M. Vershik; P. P. Nikitin. Description of the Characters and Factor Representations of the Infinite Symmetric Inverse Semigroup. Funkcionalʹnyj analiz i ego priloženiâ, Tome 45 (2011) no. 1, pp. 16-30. http://geodesic.mathdoc.fr/item/FAA_2011_45_1_a1/

[1] V. V. Vagner, “Obobschennye gruppy”, Dokl. AN SSSR, 84 (1952), 24–43

[2] A. M. Vershik, “Dvoistvennost Kreina, pozitivnye 2-algebry i dilatatsiya koumnozhenii”, Funkts. analiz i ego pril., 41:2 (2007), 24–43 | DOI | MR | Zbl

[3] A. M. Vershik, Nesvobodnye deistviya grupp i teoriya kharakterov, gotovitsya k pechati

[4] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR

[5] A. M. Vershik, S. V. Kerov, “Kharaktery i faktor-predstavleniya beskonechnoi simmetricheskoi gruppy”, Dokl. AN SSSR, 257:5 (1981), 1037–1040 | MR | Zbl

[6] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR

[7] A. M. Vershik, P. P. Nikitin, “Sledy na beskonechnykh algebrakh Brauera.”, Funkts. analiz i ego pril., 40:3 (2006), 3–11 | DOI | MR | Zbl

[8] K. Kassel, Kvantovye gruppy, Fazis, M., 1999

[9] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, Mir, M., 1972 | Zbl

[10] V. A. Oganesyan, “O poluprostote sistemnoi algebry”, Dokl. AN Arm. SSR, 21 (1955), 145–147 | MR | Zbl

[11] L. I. Popova, “Opredelyayuschie sootnosheniya nekotorykh podgrupp chastichnykh preobrazovanii konechnogo mnozhestva”, Uch. zapiski Leningr. gos. ped. in-ta im. A. I. Gertsena, 218 (1961), 191–212 | Zbl

[12] T. Halverson, “Representations of the $q$-rook monoid”, J. Algebra, 273:1 (2004), 227–251 | DOI | MR | Zbl

[13] W. D. Munn, “The characters of the symmetric inverse semigroup”, Proc. Cambridge Philos. Soc., 53:1 (1957), 13–18 | DOI | MR | Zbl

[14] W. D. Munn, “On semigroup algebras”, Proc. Cambridge Philos. Soc., 51:1 (1955), 1–15 | DOI | MR | Zbl

[15] G. Olshansky, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie Groups and Lie Algebras, Académiai Kiadó, Budapest, 1985, 181–197 | MR

[16] G. B. Preston, “Representations of inverse semi-groups”, J. London Math. Soc., 29 (1954), 411–419 | DOI | MR | Zbl

[17] L. Solomon, “Representations of the rook monoid”, J. Algebra, 256:2 (2002), 309–342 | DOI | MR | Zbl

[18] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl

[19] V. V. Vershinin, “On the inverse braid monoid”, Topology Appl., 156:6, 1153-1166 | DOI | MR | Zbl

[20] A. M. Vershik, S. V. Kerov, “The Grothendieck group of the infinite symmetric group and symmetric Functions (with the elements of the theory $K_0$-functor of AF-algebras)”, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–118 | MR

[21] A. M. Vershik, N. V. Tsilevich, “On different models of representations of the infinite symmetric group”, Adv. Appl. Math., 37:4 (2006), 526–540 | DOI | MR | Zbl