An Integer-Valued Version of the Birman--Krein Formula
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

An identity in abstract scattering theory is discussed. This identity can be interpreted as an integer-valued version of the Birman–Krein formula.
Mots-clés : Birman–Krein formula
Keywords: spectral projections, index, scattering matrix.
@article{FAA_2010_44_4_a6,
     author = {A. B. Pushnitskii},
     title = {An {Integer-Valued} {Version} of the {Birman--Krein} {Formula}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a6/}
}
TY  - JOUR
AU  - A. B. Pushnitskii
TI  - An Integer-Valued Version of the Birman--Krein Formula
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 80
EP  - 86
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a6/
LA  - ru
ID  - FAA_2010_44_4_a6
ER  - 
%0 Journal Article
%A A. B. Pushnitskii
%T An Integer-Valued Version of the Birman--Krein Formula
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 80-86
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a6/
%G ru
%F FAA_2010_44_4_a6
A. B. Pushnitskii. An Integer-Valued Version of the Birman--Krein Formula. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 80-86. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a6/

[1] S. Alama, P. A. Deift, R. Hempel, Comm. Math. Phys., 121:2 (1989), 291–321 | DOI | MR | Zbl

[2] M. F. Atiyah, V. K. Patodi, I. M. Singer, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl

[3] J. Avron, R. Seiler, B. Simon, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl

[4] N. A. Azamov, A. L. Carey, F. A. Sukochev, Comm. Math. Phys., 276:1 (2007), 51–91 | DOI | MR | Zbl

[5] M. Sh. Birman, M. G. Krein, DAN SSSR, 144:3 (1962), 475–478 | MR | Zbl

[6] M. Sh. Birman, D. R. Yafaev, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[7] M. Sh. Birman, D. R. Yafaev, Algebra i analiz, 4:6 (1992), 1–27 | MR | Zbl

[8] V. Bruneau, A. Pushnitski, G. Raikov, Algebra i analiz, 16:1 (2004), 207–238 | MR | Zbl

[9] V. S. Buslaev, L. D. Faddeev, DAN SSSR, 132:1 (1960), 13–16 | MR | Zbl

[10] V. S. Buslaev, Problemy mat. fiziki, LGU, 1965, no. 1, 82–101

[11] P. A. Deift, R. Hempel, Comm. Math. Phys., 103 (1986), 461–490 | DOI | MR | Zbl

[12] L. D. Faddeev, Tr. MIAN, 73, 1964, 292–313 | MR | Zbl

[13] F. Gesztesy, K. Makarov, J. Anal. Math., 81 (2000), 139–183 | DOI | MR | Zbl

[14] F. Gesztesy, K. Makarov, S. Naboko, Mathematical Results in Quantum Mechanics, Oper. Theory Adv. Appl., 108, eds. J. Dittrich, P. Exner, M. Tater, Birkhäuser, Basel, 1999, 59–90 | MR | Zbl

[15] R. Hempel, J. Reine Angew. Math., 399 (1989), 38–59 | MR | Zbl

[16] R. Hempel, Contemp. Math., 458 (2008), 393–407, Amer. Math. Soc. | DOI | MR

[17] D. Hundertmark, B. Simon, J. Math. Anal. Appl., 340 (2008), 892–900 | DOI | MR | Zbl

[18] T. Kato, Math. Ann., 162 (1965/1966), 258–279 | DOI | MR

[19] V. Kostrykin, K. A. Makarov, A. Skripka, J. Funct. Anal., 247:2 (2007), 492–508 | DOI | MR | Zbl

[20] V. Kostrykin, K. Makarov, Proc. Amer. Math. Soc., 136:6 (2008), 2067–2071 | DOI | MR | Zbl

[21] M. G. Krein, Matem. sb., 33:3 (1953), 597–626 | MR | Zbl

[22] I. M. Lifshits, ZhETF, 17 (1947), 1076–1089 | MR

[23] I. M. Lifshits, Uspekhi matem. nauk, 7:1 (1952), 171–180 | MR | Zbl

[24] A. Pushnitski, Bull. London Math. Soc., 40:2 (2008), 227–238 | DOI | MR | Zbl

[25] A. Pushnitski, Ann. Henri Poincaré, 10:4 (2009), 793–822 | DOI | MR

[26] A. Pushnitski, D. Yafaev, J. Funct. Anal., 259:8 (2010), 1950–1973 | DOI | MR | Zbl

[27] A. Pushnitski, The Birman–Schwinger principle on the essential spectrum, gotovitsya k pechati

[28] J. Robbin, D. Salamon, Bull. London Math. Soc., 27:1 (1995), 1–33 | DOI | MR | Zbl

[29] A. V. Sobolev, Ann. Inst. H. Poincaré Phys. Théor., 58:1 (1993), 55–83 | MR | Zbl

[30] D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izd-vo S.-Peterburgskogo universiteta, S.-Peterburg, 1994 | MR