A Commutator Method for the Diagonalization of Hankel Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the explicit diagonalization of some Hankel operators is presented. This method makes it possible to give new proofs of classical results on the diagonalization of Hankel operators with absolutely continuous spectrum and obtain new results. The approach relies on the commutation of a Hankel operator with a certain second-order differential operator.
Keywords: Hankel operators, spectrum, eigenfunctions, commutators.
Mots-clés : explicit solutions
@article{FAA_2010_44_4_a5,
     author = {D. R. Yafaev},
     title = {A {Commutator} {Method} for the {Diagonalization} of {Hankel} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a5/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - A Commutator Method for the Diagonalization of Hankel Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 65
EP  - 79
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a5/
LA  - ru
ID  - FAA_2010_44_4_a5
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T A Commutator Method for the Diagonalization of Hankel Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 65-79
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a5/
%G ru
%F FAA_2010_44_4_a5
D. R. Yafaev. A Commutator Method for the Diagonalization of Hankel Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 65-79. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a5/

[1] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[2] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, 1, 2, Nauka, M., 1973, 1974

[3] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[4] T. Carleman, Sur les équations intégrales singulières à noyau réel et symetrique, Almqvist and Wiksell, 1923

[5] W. Magnus, “On the spectrum of Hilbert's matrix”, Amer. J. Math., 72 (1950), 699–704 | DOI | MR | Zbl

[6] F. G. Mehler, “Über eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR

[7] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974 | MR

[8] V. V. Peller, Operatory Gankelya i ikh prilozheniya, NITs RKhD, M.–Izhevsk, 2005

[9] M. Rosenblum, “On the Hilbert matrix, I, II”, Proc. Amer. Math. Soc., 9 (1958), 137–140, 581–585 | MR | Zbl

[10] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, IL, M., 1961

[11] J. S. Howland, “Spectral theory of operators of Hankel type. I, II”, Indiana Univ. Math. J., 41:2 (1992), 409–426, 427–434 | DOI | MR | Zbl

[12] H. Shanker, “An integral equation for Whittaker's confluent hypergeometric function”, Proc. Cambridge Philos. Soc., 45 (1949), 482–483 | DOI | MR | Zbl

[13] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl