Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_4_a4, author = {Yu. G. Safarov and N. D. Filonov}, title = {Asymptotic {Estimates} of the {Difference} {Between} the {Dirichlet} and {Neumann} {Counting} {Functions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {54--64}, publisher = {mathdoc}, volume = {44}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a4/} }
TY - JOUR AU - Yu. G. Safarov AU - N. D. Filonov TI - Asymptotic Estimates of the Difference Between the Dirichlet and Neumann Counting Functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 54 EP - 64 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a4/ LA - ru ID - FAA_2010_44_4_a4 ER -
%0 Journal Article %A Yu. G. Safarov %A N. D. Filonov %T Asymptotic Estimates of the Difference Between the Dirichlet and Neumann Counting Functions %J Funkcionalʹnyj analiz i ego priloženiâ %D 2010 %P 54-64 %V 44 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a4/ %G ru %F FAA_2010_44_4_a4
Yu. G. Safarov; N. D. Filonov. Asymptotic Estimates of the Difference Between the Dirichlet and Neumann Counting Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 54-64. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a4/
[1] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[2] N. Filonov, “Ob odnom neravenstve na sobstvennye chisla zadach Dirikhle i Neimana dlya operatora Laplasa”, Algebra i analiz, 16:2 (2004), 172–176 | MR | Zbl
[3] L. Friedlander, “Some inequalities between Dirichlet and Neumann eigenvalues”, Arch. Rational Mech. Anal., 116:2 (1991), 153–160 | DOI | MR | Zbl
[4] T. E. Gureev, Yu. G. Safarov, “Tochnaya asimptotika spektra operatora Laplasa na mnogoobrazii s periodicheskimi geodezicheskimi”, Kraevye zadachi matematicheskoi fiziki, 13, Trudy MIAN SSSR, 179, 1988, 36–53 | MR | Zbl
[5] V. Ya. Ivrii, “O vtorom chlene spektralnoi asimptotiki dlya operatora Laplasa–Beltrami na mnogoobraziyakh s kraem”, Funkts. analiz i ego pril., 14:2 (1980), 25–34 | MR | Zbl
[6] V. Ivrii, “Sharp spectral asymptotics for operators with irregular coefficients. II. Domains with boundary and degeneration”, Comm. Partial Differential Equations, 28:1-2 (2003), 103–128 | DOI | MR | Zbl
[7] Yu. Netrusov, “Sharp remainder estimates in the Weyl formula for the Neumann Laplacian on a class of planar regions”, J. Funct. Anal., 250:1 (2007), 21–41 | DOI | MR | Zbl
[8] Yu. Netrusov, Yu. Safarov, “Weyl asymptotic formula for the Laplacian on domains with rough boundaries”, Commun. Math. Phys., 253:2 (2005), 481–509 | DOI | MR | Zbl
[9] Yu. Safarov, “Fourier Tauberian theorems and applications”, J. Funct. Anal., 185:1 (2001), 111–128 | DOI | MR | Zbl
[10] Yu. Safarov, D. Vassiliev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Translation of Math. Monographs, 155, Amer. Math. Soc., Providence, RI, 1997 | MR
[11] D. G. Vasilev, “Dvuchlennaya asimptotika spektra kraevoi zadachi v sluchae kusochno gladkoi granitsy”, Dokl. AN SSSR, 286:5 (1986), 1043–1046 | MR
[12] D. G. Vasilev, “Dvuchlennaya asimptotika spektra kraevoi zadachi pri vnutrennem otrazhenii obschego vida”, Funkts. analiz i ego pril., 18:4 (1984), 1–13 | MR | Zbl
[13] Ya. B. Vorobets, “O mere mnozhestva periodicheskikh tochek bilyarda”, Matem. zametki, 55:5 (1994), 25–35 | MR | Zbl