Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 34-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Two inverse problems for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ are studied. For $\theta\ge0$, there is a mapping $F\colon W^{\theta}_2 \to l^{\theta}_B$, $F(\sigma)=\{s_k\}_1^\infty$, related to the first of these problems, where $W^\theta_2= W^{\theta}_2[0,\pi]$ is the Sobolev space, $\sigma =\int q$ is a primitive of the potential $q$, and $l^{\theta}_B$ is a specially constructed finite-dimensional extension of the weighted space $l^{\theta}_2$, where we place the regularized spectral data ${\mathbf s}=\{s_k\}_1^\infty$ in the problem of reconstruction from two spectra. The main result is uniform lower and upper bounds for $\|\sigma - \sigma_1\|_\theta$ via the $l^{\theta}_B$-norm $\|{\mathbf s}-{\mathbf s}_1\|_\theta$ of the difference of regularized spectral data. A similar result is obtained for the second inverse problem, that is, the problem of reconstructing the potential from the spectral function of the operator $L$ generated by the Dirichlet boundary conditions. The result is new even for the classical case $q\in L_2$, which corresponds to $\theta =1$.
Mots-clés :
inverse Sturm–Liouville problem
Keywords: singular potentials, stability for inverse problems.
Keywords: singular potentials, stability for inverse problems.
@article{FAA_2010_44_4_a3,
author = {A. M. Savchuk and A. A. Shkalikov},
title = {Inverse {Problems} for {Sturm--Liouville} {Operators} with {Potentials} in {Sobolev} {Spaces:} {Uniform} {Stability}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {34--53},
publisher = {mathdoc},
volume = {44},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/}
}
TY - JOUR AU - A. M. Savchuk AU - A. A. Shkalikov TI - Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2010 SP - 34 EP - 53 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/ LA - ru ID - FAA_2010_44_4_a3 ER -
%0 Journal Article %A A. M. Savchuk %A A. A. Shkalikov %T Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability %J Funkcionalʹnyj analiz i ego priloženiâ %D 2010 %P 34-53 %V 44 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/ %G ru %F FAA_2010_44_4_a3
A. M. Savchuk; A. A. Shkalikov. Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 34-53. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/