Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 34-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Two inverse problems for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ are studied. For $\theta\ge0$, there is a mapping $F\colon W^{\theta}_2 \to l^{\theta}_B$, $F(\sigma)=\{s_k\}_1^\infty$, related to the first of these problems, where $W^\theta_2= W^{\theta}_2[0,\pi]$ is the Sobolev space, $\sigma =\int q$ is a primitive of the potential $q$, and $l^{\theta}_B$ is a specially constructed finite-dimensional extension of the weighted space $l^{\theta}_2$, where we place the regularized spectral data ${\mathbf s}=\{s_k\}_1^\infty$ in the problem of reconstruction from two spectra. The main result is uniform lower and upper bounds for $\|\sigma - \sigma_1\|_\theta$ via the $l^{\theta}_B$-norm $\|{\mathbf s}-{\mathbf s}_1\|_\theta$ of the difference of regularized spectral data. A similar result is obtained for the second inverse problem, that is, the problem of reconstructing the potential from the spectral function of the operator $L$ generated by the Dirichlet boundary conditions. The result is new even for the classical case $q\in L_2$, which corresponds to $\theta =1$.
Mots-clés : inverse Sturm–Liouville problem
Keywords: singular potentials, stability for inverse problems.
@article{FAA_2010_44_4_a3,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Inverse {Problems} for {Sturm--Liouville} {Operators} with {Potentials} in {Sobolev} {Spaces:} {Uniform} {Stability}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--53},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 34
EP  - 53
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/
LA  - ru
ID  - FAA_2010_44_4_a3
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 34-53
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/
%G ru
%F FAA_2010_44_4_a3
A. M. Savchuk; A. A. Shkalikov. Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 4, pp. 34-53. http://geodesic.mathdoc.fr/item/FAA_2010_44_4_a3/