Bony Attractors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 73-76
Cet article a éte moissonné depuis la source Math-Net.Ru
A new possible geometry of an attractor of a dynamical system, a bony attractor, is described. A bony attractor is the union of two parts. The first part is the graph of a continuous function defined on a subset of $\Sigma^k$, the set of bi-infinite sequences of integers $m$ in the range $0\le m$. The second part is the union of uncountably many intervals contained in the closure of the graph. An open set of skew products over the Bernoulli shift $(\sigma\omega)_i=\omega_{i+1}$ with fiber $[0,1]$ is constructed such that each system in this set has a bony attractor.
Keywords:
attractor, dynamical system, skew product, Bernoulli shift.
@article{FAA_2010_44_3_a7,
author = {Yu. G. Kudryashov},
title = {Bony {Attractors}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {73--76},
year = {2010},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a7/}
}
Yu. G. Kudryashov. Bony Attractors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 73-76. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a7/