Bony Attractors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 73-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new possible geometry of an attractor of a dynamical system, a bony attractor, is described. A bony attractor is the union of two parts. The first part is the graph of a continuous function defined on a subset of $\Sigma^k$, the set of bi-infinite sequences of integers $m$ in the range $0\le m$. The second part is the union of uncountably many intervals contained in the closure of the graph. An open set of skew products over the Bernoulli shift $(\sigma\omega)_i=\omega_{i+1}$ with fiber $[0,1]$ is constructed such that each system in this set has a bony attractor.
Keywords: attractor, dynamical system, skew product, Bernoulli shift.
@article{FAA_2010_44_3_a7,
     author = {Yu. G. Kudryashov},
     title = {Bony {Attractors}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--76},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a7/}
}
TY  - JOUR
AU  - Yu. G. Kudryashov
TI  - Bony Attractors
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 73
EP  - 76
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a7/
LA  - ru
ID  - FAA_2010_44_3_a7
ER  - 
%0 Journal Article
%A Yu. G. Kudryashov
%T Bony Attractors
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 73-76
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a7/
%G ru
%F FAA_2010_44_3_a7
Yu. G. Kudryashov. Bony Attractors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 73-76. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a7/

[1] J. Milnor, Comm. Math. Phys., 99, 177–195 | DOI | MR | Zbl

[2] J. Hatchinson, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR