On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 63-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we establish sufficient conditions for the correct and unique solvability of various boundary value problems for a class of even-order operator-differential equations on the half-axis. These conditions are unimprovable in terms of operator coefficients of the equation. We note that the principal part of the equation under study suffers a discontinuity.
Keywords: Hilbert space, self-adjoint operator, operator-differential equation, discontinuous coefficient, regular solution, intermediate derivatives.
Mots-clés : isomorphism
@article{FAA_2010_44_3_a4,
     author = {A. R. Aliev and S. S. Mirzoev},
     title = {On {Boundary} {Value} {Problem} {Solvability} {Theory} for a {Class} of {High-Order} {Operator-Differential} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {63--65},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a4/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - S. S. Mirzoev
TI  - On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 63
EP  - 65
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a4/
LA  - ru
ID  - FAA_2010_44_3_a4
ER  - 
%0 Journal Article
%A A. R. Aliev
%A S. S. Mirzoev
%T On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 63-65
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a4/
%G ru
%F FAA_2010_44_3_a4
A. R. Aliev; S. S. Mirzoev. On Boundary Value Problem Solvability Theory for a Class of High-Order Operator-Differential Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 63-65. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a4/

[1] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[2] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[3] S. S. Mirzoev, Dokl. AN SSSR, 273:2 (1983), 292–295 | MR | Zbl

[4] Yu. A. Dubinskii, Matem. sb., 90(132):1 (1973), 3–22 | MR | Zbl

[5] A. G. Kostyuchenko, A. A. Shkalikov, Funkts. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[6] A. R. Aliev, Matem. zametki, 74:6 (2003), 803–814 | DOI | MR | Zbl

[7] M. G. Gasymov, Dokl. AN SSSR, 199:4 (1971), 747–750 | MR | Zbl

[8] M. G. Gasymov, Izv. AN Arm. SSR, ser. matem., 6:2–3 (1971), 131–147 | MR | Zbl