Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 27-49
Voir la notice de l'article provenant de la source Math-Net.Ru
Several general questions concerning a reduction algebra, namely, rings of definition and the algorithmic efficiency of the set of ordering relations, are discussed. For reduction algebras related to the diagonal embedding of the Lie algebra $\mathfrak{gl}_n$ into $\mathfrak{gl}_n\oplus\mathfrak{gl}_n$, a stabilization phenomenon is established and a complete set of defining relations is given.
Keywords:
reduction algebra, extremal projector, ordering relations.
@article{FAA_2010_44_3_a2,
author = {O. V. Ogievetskii and S. M. Khoroshkin},
title = {Diagonal {Reduction} {Algebras} of $\mathfrak{gl}$ {Type}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {27--49},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/}
}
O. V. Ogievetskii; S. M. Khoroshkin. Diagonal Reduction Algebras of $\mathfrak{gl}$ Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 27-49. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/