Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2010_44_3_a2, author = {O. V. Ogievetskii and S. M. Khoroshkin}, title = {Diagonal {Reduction} {Algebras} of $\mathfrak{gl}$ {Type}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {27--49}, publisher = {mathdoc}, volume = {44}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/} }
O. V. Ogievetskii; S. M. Khoroshkin. Diagonal Reduction Algebras of $\mathfrak{gl}$ Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 27-49. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/
[1] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li. II. Obschaya skhema postroeniya ponizhayuschikh operatorov. Gruppy $SU(n)$”, TMF, 15:1 (1973), 107–119 | MR
[2] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Opisanie nekotorogo klassa proektsionnykh operatorov dlya poluprostykh kompleksnykh algebr Li”, Matem. zametki, 26:1 (1979), 15–25 | MR | Zbl
[3] A. Cauchy, “Mémoire sur les fonctions alternées et sur les sommes alternées”, “Exercices d'analyse et de physique mathématique”, Vol. 2, Bachelier, Paris, 1841, 151–159
[4] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR | Zbl
[5] S. Khoroshkin, O. Ogievetsky, Structure constants of diagonal reduction algebras of $\mathfrak{gl}$ type (gotovitsya k publikatsii)\kern-2pt
[6] S. Khoroshkin, O. Ogievetsky, Examples of diagonal reduction algebras (gotovitsya k publikatsii)\kern-2pt
[7] J. Mickelsson, “Step algebras of semisimple subalgebras of Lie algebras”, Rep. Math. Phys., 4:4 (1973), 307–318 | DOI | MR | Zbl
[8] D. Zhelobenko, Predstavleniya reduktivnykh algebr Li, Nauka, M., 1994 | MR | Zbl