Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 27-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several general questions concerning a reduction algebra, namely, rings of definition and the algorithmic efficiency of the set of ordering relations, are discussed. For reduction algebras related to the diagonal embedding of the Lie algebra $\mathfrak{gl}_n$ into $\mathfrak{gl}_n\oplus\mathfrak{gl}_n$, a stabilization phenomenon is established and a complete set of defining relations is given.
Keywords: reduction algebra, extremal projector, ordering relations.
@article{FAA_2010_44_3_a2,
     author = {O. V. Ogievetskii and S. M. Khoroshkin},
     title = {Diagonal {Reduction} {Algebras} of $\mathfrak{gl}$ {Type}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {27--49},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/}
}
TY  - JOUR
AU  - O. V. Ogievetskii
AU  - S. M. Khoroshkin
TI  - Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 27
EP  - 49
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/
LA  - ru
ID  - FAA_2010_44_3_a2
ER  - 
%0 Journal Article
%A O. V. Ogievetskii
%A S. M. Khoroshkin
%T Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 27-49
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/
%G ru
%F FAA_2010_44_3_a2
O. V. Ogievetskii; S. M. Khoroshkin. Diagonal Reduction Algebras of $\mathfrak{gl}$ Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 3, pp. 27-49. http://geodesic.mathdoc.fr/item/FAA_2010_44_3_a2/

[1] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Proektsionnye operatory dlya prostykh grupp Li. II. Obschaya skhema postroeniya ponizhayuschikh operatorov. Gruppy $SU(n)$”, TMF, 15:1 (1973), 107–119 | MR

[2] R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoi, “Opisanie nekotorogo klassa proektsionnykh operatorov dlya poluprostykh kompleksnykh algebr Li”, Matem. zametki, 26:1 (1979), 15–25 | MR | Zbl

[3] A. Cauchy, “Mémoire sur les fonctions alternées et sur les sommes alternées”, “Exercices d'analyse et de physique mathématique”, Vol. 2, Bachelier, Paris, 1841, 151–159

[4] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR | Zbl

[5] S. Khoroshkin, O. Ogievetsky, Structure constants of diagonal reduction algebras of $\mathfrak{gl}$ type (gotovitsya k publikatsii)\kern-2pt

[6] S. Khoroshkin, O. Ogievetsky, Examples of diagonal reduction algebras (gotovitsya k publikatsii)\kern-2pt

[7] J. Mickelsson, “Step algebras of semisimple subalgebras of Lie algebras”, Rep. Math. Phys., 4:4 (1973), 307–318 | DOI | MR | Zbl

[8] D. Zhelobenko, Predstavleniya reduktivnykh algebr Li, Nauka, M., 1994 | MR | Zbl