Moduli spaces $\mathcal{M}_{2,1}$ and $\mathcal{M}_{3,1}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 48-56
Cet article a éte moissonné depuis la source Math-Net.Ru
The cell structure of the spaces $\mathcal{M}_{2,1}$ and $\mathcal{M}_{3,1}$ is considered. These are the spaces of complex curves of genus 2 and 3 with one marked point. For the space $\mathcal{M}_{2,1}$, nine cells of the highest dimension 8 are described and their adjacency is studied. For the space $\mathcal{M}_{3,1}$, a list of all $1726$ cells of the highest dimension 14 (with orientation) is obtained. The list of adjacent couples of cells is also obtained. These lists can be found on the web.
Keywords:
moduli space of curves with marked points, embedded graphs.
@article{FAA_2010_44_2_a4,
author = {Yu. Yu. Kochetkov},
title = {Moduli spaces $\mathcal{M}_{2,1}$ and $\mathcal{M}_{3,1}$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {48--56},
year = {2010},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a4/}
}
Yu. Yu. Kochetkov. Moduli spaces $\mathcal{M}_{2,1}$ and $\mathcal{M}_{3,1}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 48-56. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a4/
[1] S. Lando, A. Zvonkin, Graphs on Surfaces and Their Applications, Springer-Verlag, Berlin, 2004 | MR | Zbl
[2] M. Kontzevich, “Intersection theory on the moduli space of curves and matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR
[3] Yu. Yu. Kochetkov, Katalogi skleek http://vd.jino.ru/files/contrib/kochetkov_m31.zip