Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 14-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the pairwise disjointness of representations $T_{z,w}$ of the infinite-dimensional unitary group. These representations are a natural generalization of the regular representation to the “big” group $U(\infty)$. They were introduced and studied by G. Olshanski and A. Borodin. The disjointness of these representations reduces to that of certain probability measures on the space of paths in the Gelfand–Tsetlin graph. We prove the latter disjointness using probabilistic and combinatorial methods.
Keywords: disjointness of representations, central measure, harmonic analysis, infinite-dimensional unitary group.
@article{FAA_2010_44_2_a2,
     author = {V. E. Gorin},
     title = {Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--32},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a2/}
}
TY  - JOUR
AU  - V. E. Gorin
TI  - Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 14
EP  - 32
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a2/
LA  - ru
ID  - FAA_2010_44_2_a2
ER  - 
%0 Journal Article
%A V. E. Gorin
%T Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 14-32
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a2/
%G ru
%F FAA_2010_44_2_a2
V. E. Gorin. Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 2, pp. 14-32. http://geodesic.mathdoc.fr/item/FAA_2010_44_2_a2/

[1] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973

[2] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422, arXiv: math/0109194 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, “Random partitions and the gamma kernel”, Adv. Math., 194:1 (2005), 141–202, arXiv: math-ph/0305043 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123, arXiv: math-ph/0010015 | DOI | MR | Zbl

[5] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642, arXiv: math/0312270 | DOI | MR | Zbl

[6] T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985 | MR | Zbl

[7] T. M. Liggett, R. H. Schonmann, A. M. Stacey, “Domination by product measures”, Ann. Probab., 25:1 (1997), 71–95 | DOI | MR | Zbl

[8] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[9] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114:2 (2002), 239–266, arXiv: math-ph/0010014 | DOI | MR | Zbl

[10] G. I. Olshanskii, “Unitarnye predstavleniya beskonechnomernykh par $(G,K)$ i formalizm R. Khau”, Dokl. AN SSSR, 269:1 (1983), 33–36 | MR

[11] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524, arXiv: math/0109193 | DOI | MR | Zbl

[12] D. Pickrell, “Measures on infinite-dimensional Grassmann manifolds”, J. Funct. Anal., 70:2 (1987), 323–356 | DOI | MR | Zbl

[13] L. Russo, “An approximate zero-one law”, Z. Wahrsch. Verw. Gebiete, 61:1 (1982), 129–139 | DOI | MR | Zbl

[14] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989 | MR

[15] D. Voiculescu, “Représentations factorielles de type II$_1$ de $U(\infty)$”, J. Math. Pures Appl., 55:1 (1976), 1–20 | MR | Zbl