Filtering Bases and Cohomology of Nilpotent Subalgebras of the Witt Algebra and the Algebra of Loops in~$sl_2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 4-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the cohomology with trivial coefficients of the Lie algebras $L_k$, $k\ge 1$, of polynomial vector fields with zero $k$-jet on the circle and the cohomology of similar subalgebras $\mathcal{L}_k$ of the algebra of polynomial loops with values in $sl_2$. The main result is a construction of special bases in the exterior complexes of these algebras. Using this construction, we obtain the following results. We calculate the cohomology of $L_k$ and $\mathcal{L}_k$. We obtain formulas in terms of Schur polynomials for cycles representing the homology of these algebras. We introduce “stable” filtrations of the exterior complexes of $L_k$ and $\mathcal{L}_k$, thus generalizing Goncharova's notion of stable cycles for $L_k$, and give a polynomial description of these filtrations. We find the spectral resolutions of the Laplace operators for $L_1$ and $\mathcal{L}_1$.
Keywords: Witt algebra, algebra of loops, marked partitions, filtering basis, Sylvester's identity, Laplace operator.
@article{FAA_2010_44_1_a1,
     author = {F. V. Weinstein},
     title = {Filtering {Bases} and {Cohomology} of {Nilpotent} {Subalgebras} of the {Witt} {Algebra} and the {Algebra} of {Loops} in~$sl_2$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {4--26},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a1/}
}
TY  - JOUR
AU  - F. V. Weinstein
TI  - Filtering Bases and Cohomology of Nilpotent Subalgebras of the Witt Algebra and the Algebra of Loops in~$sl_2$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2010
SP  - 4
EP  - 26
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a1/
LA  - ru
ID  - FAA_2010_44_1_a1
ER  - 
%0 Journal Article
%A F. V. Weinstein
%T Filtering Bases and Cohomology of Nilpotent Subalgebras of the Witt Algebra and the Algebra of Loops in~$sl_2$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2010
%P 4-26
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a1/
%G ru
%F FAA_2010_44_1_a1
F. V. Weinstein. Filtering Bases and Cohomology of Nilpotent Subalgebras of the Witt Algebra and the Algebra of Loops in~$sl_2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 44 (2010) no. 1, pp. 4-26. http://geodesic.mathdoc.fr/item/FAA_2010_44_1_a1/

[1] F. V. Vainshtein, “Filtruyuschie bazisy, kogomologii beskonechnomernykh algebr Li i operatory Laplasa”, Funkts. analiz i ego pril., 19:4 (1985), 11–22 | MR

[2] I. M. Gelfand, B. L. Feigin, D. B. Fuks, “Kogomologii beskonechnomernykh algebr Li i operatory Laplasa”, Funkts. analiz i ego pril., 12:4 (1978), 1–5 | MR

[3] L. V. Goncharova, “Kogomologii algebr Li formalnykh vektornykh polei na pryamoi”, Funkts. analiz i ego pril., 7:2 (1973), 6–14 | MR | Zbl

[4] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR

[5] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[6] B. L. Feigin, D. B. Fuks, “Gomologii algebry Li vektornykh polei na pryamoi”, Funkts. analiz i ego pril., 14:3 (1980), 45–60 | MR | Zbl

[7] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, M., Nauka, 1984 | MR

[8] B. L. Feigin, D. B. Fuchs, “Verma modules over the Virasoro algebra”, Topology (Leningrad, 1982), Lecture Notes in Math., 1060, Springer-Verlag, Berlin, 1984, 230–245 | DOI | MR

[9] B. L. Feigin, D. B. Fuchs, V. S. Retakh, “Massey operations in the cohomology of the infinite-dimensional Lie algebra $L_1$”, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., 1346, Springer-Verlag, Berlin, 1988, 13–31 | DOI | MR

[10] I. M. Gelfand, “The cohomology of infinite dimensional Lie algebras: some questions of integral geometry”, Actes du Congrès International des Mathématiciens (Nice, 1970), tome 1, Gauthier-Villars, Paris, 1971, 95–111 | MR

[11] Sh. Kumar, Kac–Moody groups, their flag varieties and representation theory, Progress in Math., 204, Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl

[12] A. Rocha-Caridi, N. R. Wallach, “Characters of irreducible representations of the Lie algebra of vector fields on the circle”, Invent. Math., 72:1 (1983), 57–75 | DOI | MR | Zbl

[13] J. J. Sylvester, F. Franklin, “A constructive theory of partitions, arranged in three acts, an interact and an exodion”, Amer. J. Math., 5:1-4 (1882), 251–330 | DOI | MR

[14] F. V. Weinstein, “Filtering bases: a tool to compute cohomologies of abstract subalgebras of the Witt algebra”, Unconventional Lie algebras, Adv. Soviet Math., 17, Amer. Math. Soc., Providence, RI, 1993, 155–216 | MR | Zbl