Determinants of Elliptic Hypergeometric Integrals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 67-86
Voir la notice de l'article provenant de la source Math-Net.Ru
We start from an interpretation of the $BC_2$-symmetric “Type I” (elliptic Dixon) elliptic hypergeometric integral evaluation as a formula for a Casoratian of the elliptic hypergeometric equation and then generalize this construction to higher-dimensional integrals and higher-order hypergeometric functions. This allows us to prove the corresponding formulas for the elliptic beta integral and symmetry transformation in a new way, by proving that both sides satisfy the same difference equations and that these difference equations satisfy a needed Galois-theoretic condition ensuring the uniqueness of the simultaneous solution.
Keywords:
elliptic hypergeometric function, difference equation, determinant, difference Galois theory.
@article{FAA_2009_43_4_a5,
author = {E. M. Rains and V. P. Spiridonov},
title = {Determinants of {Elliptic} {Hypergeometric} {Integrals}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {67--86},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a5/}
}
E. M. Rains; V. P. Spiridonov. Determinants of Elliptic Hypergeometric Integrals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 67-86. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a5/