Determinants of Elliptic Hypergeometric Integrals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 67-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We start from an interpretation of the $BC_2$-symmetric “Type I” (elliptic Dixon) elliptic hypergeometric integral evaluation as a formula for a Casoratian of the elliptic hypergeometric equation and then generalize this construction to higher-dimensional integrals and higher-order hypergeometric functions. This allows us to prove the corresponding formulas for the elliptic beta integral and symmetry transformation in a new way, by proving that both sides satisfy the same difference equations and that these difference equations satisfy a needed Galois-theoretic condition ensuring the uniqueness of the simultaneous solution.
Keywords: elliptic hypergeometric function, difference equation, determinant, difference Galois theory.
@article{FAA_2009_43_4_a5,
     author = {E. M. Rains and V. P. Spiridonov},
     title = {Determinants of {Elliptic} {Hypergeometric} {Integrals}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a5/}
}
TY  - JOUR
AU  - E. M. Rains
AU  - V. P. Spiridonov
TI  - Determinants of Elliptic Hypergeometric Integrals
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 67
EP  - 86
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a5/
LA  - ru
ID  - FAA_2009_43_4_a5
ER  - 
%0 Journal Article
%A E. M. Rains
%A V. P. Spiridonov
%T Determinants of Elliptic Hypergeometric Integrals
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 67-86
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a5/
%G ru
%F FAA_2009_43_4_a5
E. M. Rains; V. P. Spiridonov. Determinants of Elliptic Hypergeometric Integrals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 67-86. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a5/

[1] Y. André, “Différentielles non commutatives et théorie de Galois différentielle ou aux différences”, Ann. Sci. Ecole Norm. Sup., 34:5 (2001), 685–739 | DOI | MR | Zbl

[2] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[3] K. Aomoto, M. Ito, “$BC_n$-type Jackson integral generalized from Gustafson's $C_n$-type sum”, J. Difference Equations Appl., 14:10–11 (2008), 1059–1097 | DOI | MR | Zbl

[4] J. F. van Diejen, V. P. Spiridonov, “Elliptic Selberg integrals”, Internat. Math. Res. Notices, 2001:20 (2001), 1083–1110 | DOI | MR | Zbl

[5] A. L. Dixon, “On a generalization of Legendre's formula $KE'-(K-E)K'=\pi/2$”, Proc. London Math. Soc. (2), 3:1 (1905), 206–224 | DOI | MR | Zbl

[6] P. I. Etingof, Difference equations with elliptic coefficients and quantum affine algebras, http://arxiv.org/abs/hep-th/9312057

[7] C. Krattenthaler, “Advanced determinant calculus: a complement”, Linear Algebra Appl., 411 (2005), 68–166 | DOI | MR | Zbl

[8] M. van der Put, M. F. Singer, Galois theory of difference equations, Lecture Notes in Math., 1666, Springer-Verlag, Berlin, 1997 | MR | Zbl

[9] E. M. Rains, Recurrences for elliptic hypergeometric integrals, http://arxiv.org/abs/math.CA/0504285

[10] E. M. Rains, “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (to appear) | MR

[11] E. M. Rains, “Limits of elliptic hypergeometric integrals”, Ramanujan J., 18:3 (2009), 257–306 | DOI | MR | Zbl

[12] D. Richards, Q. Zheng, “Determinants of period matrices and an application to Selberg's multidimensional beta integral”, Adv. Appl. Math., 28:3–4 (2002), 602–633 | DOI | MR | Zbl

[13] V. P. Spiridonov, “Ob ellipticheskoi beta-funktsii”, UMN, 56 (1) (2001), 181–182 | DOI | MR | Zbl

[14] V. P. Spiridonov, “Theta hypergeometric integrals”, Algebra i analiz, 15:6 (2003), 161–215 | MR | Zbl

[15] V. P. Spiridonov, Ellipticheskie gipergeometricheskie funktsii, Dokt. diss., OIYaI, Sentyabr 2004

[16] V. P. Spiridonov, “Ellipticheskie gipergeometricheskie funktsii i modeli tipa Kalodzhero–Sazerlenda”, TMF, 150:2 (2007), 311–324 | DOI | MR | Zbl

[17] V. P. Spiridonov, “Short proofs of the elliptic beta integrals”, Ramanujan J., 13 (2007), 265–283 | DOI | MR | Zbl

[18] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207:1 (2006), 91–132 | DOI | MR | Zbl

[19] K. Takano, E. Bannai, “A global study of Jordan–Pochhammer differential equations”, Funkcial. Ekvac., 19:1 (1976), 85–99 | MR | Zbl

[20] A. N. Varchenko, “Beta-funktsiya Eilera, determinant Vandermonda, uravnenie Lezhandra, i kriticheskie znacheniya lineinykh funktsii na konfiguratsii giperploskostei, I, II”, Izv. AN SSSR, ser. matem., 53:6 (1989), 1206–1235 ; 54:1 (1990), 146–158 | MR | Zbl | MR | Zbl